首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

2.
Heat shock in Drosophila results in repression of most normal (non-heat shock) mRNA translation and the preferential translation of the heat shock mRNAs. The sequence elements that confer preferential translation have been localized to the 5'-untranslated region (5'-UTR) for Hsp22 and Hsp70 mRNAs (in Drosophila). Hsp90 mRNA is unique among the heat shock mRNAs in having extensive secondary structure in its 5'-UTR and being abundantly represented in the non-heat shocked cell. In this study, we show that Hsp90 mRNA translation is inefficient at normal growth temperature, and substantially activated by heat shock. Its preferential translation is not based on an IRES-mediated translation pathway, because overexpression of eIF4E-BP inhibits its translation (and the translation of Hsp70 mRNA). The ability of Hsp90 mRNA to be preferentially translated is conferred by its 5'-UTR, but, in contrast to Hsp22 and -70, is primarily influenced by nucleotides close to the AUG initiation codon. We present a model to account for Hsp90 mRNA translation, incorporating results indicating that heat shock inhibits eIF4F activity, and that Hsp90 mRNA translation is sensitive to eIF4F inactivation.  相似文献   

3.
The binding of mRNAs to ribosomes is mediated by the protein complex eIF4F in conjunction with eIF4B (eukaryotic initiation factor 4F and 4B). EIF4F is a three subunit complex consisting of eIF4A (RNA helicase), eIF4E (mRNA cap binding protein), and eIF4G (bridging protein). The crucial role is played by eIF4E, which directly binds the 5'-cap structure of the mRNA and facilitates the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. EIF4E binding to mRNA and to other initiation factors is regulated on several levels, including its phosphorylation on Ser-209, and association with its regulatory protein 4E-binding protein (4E-BP1). In this study we document that both the translation initiation factor eIF4E and its regulator 4E-BP1 become dephosphorylated in the early stage porcine zygotes already 8 hr post-activation. Similarly, the activities of ERK1/2 MAP and Mnk1 kinases, which are both involved in eIF4E phosphorylation, gradually decrease during this period with the timing similar to that of eIF4E dephosphorylation. The formation of an active eIF4F complex is also diminished after 9-15 hr post-activation, although substantial amounts of this complex have been detected also 24 hr post-activation (2-cell stage). The overall protein synthesis in the parthenotes decreases gradually from 12 hr post-activation reaching a minimum after 48 hr (4-cell stage). Although the translation is gradually decreasing during early preimplantation development, the eIF4F complex, which is temporarily formed, might be a premise for the translation of a small subset of mRNAs at this period of development.  相似文献   

4.
Translation initiation is a key point of regulation in eukaryotic gene expression. 4E-binding proteins (4E-BPs) inhibit initiation by blocking the association of eIF4E with eIF4G, two integral components of the mRNA cap-binding complex. Phosphorylation of 4E-BP1 reduces its ability to bind to eIF4E and thereby to compete with eIF4G. A novel combination of biophysical and biochemical tools was used to measure the impact of phosphorylation and acidic side chain substitution at each potentially modulatory site in 4E-BP1. For each individual site, we have analyzed the effects of modification on eIF4E binding using affinity chromatography and surface plasmon resonance analysis, and on the regulatory function of the 4E-BP1 protein using a yeast in vivo model system and a mammalian in vitro translation assay. We find that modifications at the two sites immediately flanking the eIF4E-binding domain, Thr(46) and Ser(65), consistently have the most significant effects, and that phosphorylation of Ser(65) causes the greatest reduction in binding affinity. These results establish a quantitative framework that should contribute to understanding of the molecular interactions underlying 4E-BP1-mediated translational regulation.  相似文献   

5.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

6.
Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.  相似文献   

7.
Connor JH  Lyles DS 《Journal of virology》2002,76(20):10177-10187
Vesicular stomatitis virus (VSV) modulates protein synthesis in infected cells in a way that allows the translation of its own 5'-capped mRNA but inhibits the translation of host mRNA. Previous data have shown that inactivation of eIF2alpha is important for VSV-induced inhibition of host protein synthesis. We tested whether there is a role for eIF4F in this inhibition. The multisubunit eIF4F complex is involved in the regulation of protein synthesis via phosphorylation of cap-binding protein eIF4E, a subunit of eIF4F. Translation of host mRNA is significantly reduced under conditions in which eIF4E is dephosphorylated. To determine whether VSV infection alters the eIF4F complex, we analyzed eIF4E phosphorylation and the association of eIF4E with other translation initiation factors, such as eIF4G and the translation inhibitor 4E-BP1. VSV infection of HeLa cells resulted in the dephosphorylation of eIF4E at serine 209 between 3 and 6 h postinfection. This time course corresponded well to that of the inhibition of host protein synthesis induced by VSV infection. Cells infected with a VSV mutant that is delayed in the ability to inhibit host protein synthesis were also delayed in dephosphorylation of eIF4E. In addition to decreasing eIF4E phosphorylation, VSV infection also resulted in the dephosphorylation and activation of eIF4E-binding protein 4E-BP1 between 3 and 6 h postinfection. Analysis of cap-binding complexes showed that VSV infection reduced the association of eIF4E with the eIF4G scaffolding subunit at the same time as its association with 4E-BP1 increased and that these time courses correlated with the dephosphorylation of eIF4E. These changes in the eIF4F complex occurred over the same time period as the onset of viral protein synthesis, suggesting that activation of 4E-BP1 does not inhibit translation of viral mRNAs. In support of this idea, VSV protein synthesis was not affected by the presence of rapamycin, a drug that blocks 4E-BP1 phosphorylation. These data show that VSV infection results in modifications of the eIF4F complex that are correlated with the inhibition of host protein synthesis and that translation of VSV mRNAs occurs despite lowered concentrations of the active cap-binding eIF4F complex. This is the first noted modification of both eIF4E and 4E-BP1 phosphorylation levels among viruses that produce capped mRNA for protein translation.  相似文献   

8.
Eukaryotic initiation factor (eIF) 4G plays an important role in assembling the initiation complex required for ribosome binding to an mRNA. Plants, animals, and yeast each express two eIF4G homologs, which share only 30, 46, and 53% identity, respectively. We have examined the functional differences between plant eIF4G proteins, referred to as eIF4G and eIFiso4G, when present as subunits of eIF4F and eIFiso4F, respectively. The degree to which a 5'-cap stimulated translation was inversely correlated with the concentration of eIF4F or eIFiso4F and required the poly(A)-binding protein for optimal function. Although eIF4F and eIFiso4F directed translation of unstructured mRNAs, eIF4F supported translation of an mRNA containing 5'-proximal secondary structure substantially better than did eIFiso4F. Moreover, eIF4F stimulated translation from uncapped monocistronic or dicistronic mRNAs to a greater extent than did eIFiso4F. These data suggest that at least some functions of plant eIFiso4F and eIF4F have diverged in that eIFiso4F promotes translation preferentially from unstructured mRNAs, whereas eIF4F can promote translation also from mRNAs that contain a structured 5'-leader and that are uncapped or contain multiple cistrons. This ability may also enable eIF4F to promote translation from standard mRNAs under cellular conditions in which cap-dependent translation is inhibited.  相似文献   

9.
eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3′-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.  相似文献   

10.
Translational control in the rat heart was characterized during acute myocardial ischemia introduced by left coronary artery ligature. Within 10 min of ischemia, eukaryotic (eIF)4E binds to its negative regulator, eIF4E-binding protein-1 (4E-BP1), but the levels of 4E-BP1 are insufficient to disrupt cap-dependent mRNA initiation complexes. However, by 1 h of ischemia, the abundance of the cap-initiation complex protein eIF4G is reduced by relocalization into TIAR protein complexes, triggering 4E-BP1 sequestration of eIF4E and disruption of cap-dependent mRNA initiation complexes. As the heart begins to fail at 6 h, proteolysis of eIF4G is observed, resulting in its depletion and accompanied by limited destruction of 4E-BP1 and eIF4E. eIF4G proteolysis and modest loss of 4E-BP1 are associated with caspase-3 activation and induction of cardiomyocyte apoptotic and necrotic death. Acute heart ischemia therefore downregulates cap-dependent translation through eIF4E sequestration triggered by eIF4G depletion.  相似文献   

11.
A key player in translation initiation is eIF4E, the mRNA 5′ cap-binding protein. 4E-Transporter (4E-T) is a recently characterized eIF4E-binding protein, which regulates specific mRNAs in several developmental model systems. Here, we first investigated the role of its enrichment in P-bodies and eIF4E-binding in translational regulation in mammalian cells. Identification of the conserved C-terminal sequences that target 4E-T to P-bodies was enabled by comparison of vertebrate proteins with homologues in Drosophila (Cup and CG32016) and Caenorhabditis elegans by sequence and cellular distribution. In tether function assays, 4E-T represses bound mRNA translation, in a manner independent of these localization sequences, or of endogenous P-bodies. Quantitative polymerase chain reaction and northern blot analysis verified that bound mRNA remained intact and polyadenylated. Ectopic 4E-T reduces translation globally in a manner dependent on eIF4E binding its consensus Y30X4Lϕ site. In contrast, tethered 4E-T continued to repress translation when eIF4E-binding was prevented by mutagenesis of YX4Lϕ, and modestly enhanced the decay of bound mRNA, compared with wild-type 4E-T, mediated by increased binding of CNOT1/7 deadenylase subunits. As depleting 4E-T from HeLa cells increased steady-state translation, in part due to relief of microRNA-mediated silencing, this work demonstrates the conserved yet unconventional mechanism of 4E-T silencing of particular subsets of mRNAs.  相似文献   

12.
Eukaryotic translation initiation involves recognition of the 5' end of cellular mRNA by the cap-binding complex known as eukaryotic initiation factor 4F (eIF4F). Initiation is a key point of regulation in gene expression in response to mechanisms mediated by signal transduction pathways. We have investigated the molecular interactions underlying inhibition of human eIF4E function by regulatable repressors called 4E-binding proteins (4E-BPs). Two essential components of eIF4F are the cap-binding protein eIF4E, and eIF4G, a multi-functional protein that binds both eIF4E and other essential eIFs. We show that the 4E-BPs 1 and 2 block the interaction between eIF4G and eIF4E by competing for binding to a dorsal site on eIF4E. Remarkably, binding of the 4E-BPs at this dorsal site enhances cap-binding via the ventral cap-binding slot, thus trapping eIF4E in inactive complexes with high affinity for capped mRNA. The binding contacts and affinities for the interactions between 4E-BP1/2 and eIF4E are distinct (estimated K(d) values of 10(-8) and 3x10(-9) for 4E-BP1 and 2, respectively), and the differences in these properties are determined by three amino acids within an otherwise conserved motif. These data provide a quantitative framework for a new molecular model of translational regulation.  相似文献   

13.
Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5'-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5'-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E.4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70(S6k), resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.  相似文献   

14.
Induction of sepsis in rats causes an inhibition of protein synthesis in skeletal muscle that is resistant to the stimulatory actions of insulin. To gain a better understanding of the underlying reason for this lack of response, the present study was undertaken to investigate sepsis-induced alterations in insulin signaling to regulatory components of mRNA translation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Sepsis resulted in a 50% reduction in protein synthesis in the gastrocnemius. Protein synthesis in muscles from septic rats, but not controls, was unresponsive to stimulation by insulin. The insulin-induced hyperphosphorylation response of the translation repressor protein 4E-binding protein 1 (4E-BP1) and of the 70-kDa S6 kinase (S6K1) (1), two targets of insulin action on mRNA translation, was unimpaired in gastrocnemius of septic rats. Hyperphosphorylation of 4E-BP1 in response to insulin resulted in its dissociation from the inactive eukaryotic initiation factor (eIF)4E. 4E-BP1 complex in both control and septic rats. However, assembly of the active eIF4F complex as assessed by the association of eIF4E with eIF4G did not follow the pattern predicted by the increased availability of eIF4E resulting from changes in the phosphorylation of 4E-BP1. Indeed, sepsis caused a dramatic reduction in the amount of eIF4G associated with eIF4E in the presence or absence of insulin. Thus the inability of insulin to stimulate protein synthesis during sepsis may be related to a defect in signaling to a step in translation initiation involved in assembly of an active eIF4F complex.  相似文献   

15.
Initiation is the rate-limiting step during mRNA 5′ cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition.  相似文献   

16.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

17.
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5′-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.  相似文献   

18.
Translational regulation is critical in cancer development and progression. Translation sustains tumor growth and development of a tumor vasculature, a process known as angiogenesis, which is activated by hypoxia. Here we first demonstrate that a majority of large advanced breast cancers overexpress translation regulatory protein 4E-BP1 and initiation factor eIF4G. Using model animal and cell studies, we then show that overexpressed 4E-BP1 and eIF4G orchestrate a hypoxia-activated switch from cap-dependent to cap-independent mRNA translation that promotes increased tumor angiogenesis and growth at the level of selective mRNA translation. Elevated levels of 4E-BP1 trigger hypoxia inhibition of cap-dependent mRNA translation at high-oxygen levels and, with eIF4G, increase selective translation of mRNAs containing internal ribosome entry sites (IRESs) that include key proangiogenic, hypoxia, and survival mRNAs. The switch from cap-dependent to cap-independent mRNA translation facilitates tumor angiogenesis and hypoxia responses in animal models.  相似文献   

19.
Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.  相似文献   

20.
The 3′-untranslated regions of many plant viral RNAs contain cap-independent translation elements (CITEs) that drive translation initiation at the 5′-end of the mRNA. The barley yellow dwarf virus-like CITE (BTE) stimulates translation by binding the eIF4G subunit of translation initiation factor eIF4F with high affinity. To understand this interaction, we characterized the dynamic structural properties of the BTE, mapped the eIF4G-binding sites on the BTE and identified a region of eIF4G that is crucial for BTE binding. BTE folding involves cooperative uptake of magnesium ions and is driven primarily by charge neutralization. Footprinting experiments revealed that functional eIF4G fragments protect the highly conserved stem–loop I and a downstream bulge. The BTE forms a functional structure in the absence of protein, and the loop that base pairs the 5′-untranslated region (5′-UTR) remains solvent-accessible at high eIF4G concentrations. The region in eIF4G between the eIF4E-binding site and the MIF4G region is required for BTE binding and translation. The data support the model in which the eIF4F complex binds directly to the BTE which base pairs simultaneously to the 5′-UTR, allowing eIF4F to recruit the 40S ribosomal subunit to the 5′-end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号