首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deviant genetic codes reported in ciliates share the same feature: one (UGA) or two (UAR) of the three canonical stop codons are translated into one particular amino acid. In many genera, such as Oxytricha, Paramecium, and Tetrahymena, UAR codons are translated into glutamine. UGA is translated into cysteine in Euplotes or into tryptophan in Colpoda inflata and Blepharisma americanum. Here, we show that three peritrich species (Vorticella microstoma, Opisthonecta henneguyi, and Opisthonecta matiensis) translate UAA into glutamate and that at least UAA in O. matiensis is decoded through a mutant suppressor-like tRNA. This kind of genetic code has never been reported for any living organism. Phylogenetic analysis with alpha-tubulin sequences corroborates that peritrichs, peniculines (Paramecium), and hymenostomates (Tetrahymena) form a monophyletic group (class Oligohymenophorea). The differential translation (glu/gln) of UAR codons, the monophyly of the Oligohymenophorea, and the common evolutionary origin of glutamate and glutamine suggest that deviant genetic codes of present-day oligohymenophoreans could have the same origin.  相似文献   

2.
T Kumazaki  H Hori  S Osawa  N Ishii    K Suzuki 《Nucleic acids research》1982,10(21):7001-7004
The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%).  相似文献   

3.
T Kumazaki  H Hori    S Osawa 《Nucleic acids research》1983,11(10):3347-3350
The nucleotide sequences of 5S rRNAs from two Annelida species, Perinereis brevicirris and Sabellastarte japonica, and an Echiura species, Urechis unicinctus have been determined. Their sequences are all 120 nucleotides long. The sequence similarity percents are 88% (Perinereis/Sabellastarte), 90% (Sabellastarte/Urechis) and 92% (Perinereis/Urechis), indicating that the Echiura is indistinguishable from the Annelida by their 5S rRNAs. The 5S rRNA sequences from the Annelida/Echiura are most related to those from the Nemertinea (87%), the Mollusca (87%) and the Rotifera (88%).  相似文献   

4.
T Kumazaki  H Hori    S Osawa 《Nucleic acids research》1983,11(20):7141-7144
The nucleotide sequences of 5S rRNAs from two nemerteans (ribbon worms), Lineus geniculatus and Emplectonema gracile have been determined. Emplectonema has two 5S rRNA species that are composed of 119 and 120 nucleotides, respectively. The sequences of these two 5S rRNAs differ at 22 positions. On the other hand, only a single 5S rRNA species was found in Lineus. The sequence similarity percents are 88% (Lineus/Emplectonema longer 5S rRNA), 82% (Emplectonema longer/Emplectonema shorter) and 80% (Lineus/Emplectonema shorter). The comparisons of these sequences with those of other organisms suggest that the phylum Nemertinea is most related to the Mollusca (91%) and the Rotifera (89%), but not to fresh-water planarias (72%).  相似文献   

5.
Chemorepellents are compounds that cause ciliated protozoans to reorient their swimming direction. A number of chemorepellents have been studied in the ciliated protozoans, Paramecium and Tetrahymena. Chemorepellents, such as polycations, cause the organism to exhibit "avoidance behavior," a swimming behavior characterized by jerky movements and other deviations from normal forward swimming, which result from ciliary reversal. One well-characterized chemorepellent pathway in Tetrahymena is that of the proposed polycation receptor that is activated by lysozyme and pituitary adenylate cyclase activating polypeptide (PACAP). In this study, we compare the response of Paramecium to the chemorepellents lysozyme, vasoactive intestinal peptide (VIP), and PACAP to the previously studied polycation response in Tetrahymena. Our results indicate that lysozyme, VIP, and PACAP are all chemorepellents in Paramecium, just as they are in Tetrahymena. However, the signaling pathways involved appear to be different. While previous pharmacological characterization indicates that G-proteins are involved in polycation signaling in Tetrahymena, we present evidence that similar reception in Paramecium involves activation of a tyrosine kinase pathway in order for lysozyme avoidance to occur. Polycation responses of both organisms are inhibited by neomycin sulfate. While PACAP is the most effective of the three chemorepellents in Tetrahymena, lysozyme is the most effective chemorepellent in Paramecium.  相似文献   

6.
7.
We cloned a guanylyl cyclase of 280 kDa from the ciliate Paramecium which has an N-terminus similar to that of a P-type ATPase and a C-terminus with a topology identical to mammalian adenylyl cyclases. Respective signature sequence motifs are conserved in both domains. The cytosolic catalytic C1a and C2a segments of the cyclase are inverted. Genes coding for topologically identical proteins with substantial sequence similarities have been cloned from Tetrahymena and were detected in sequences from Plasmodium deposited by the Malaria Genome Project. After 99 point mutations to convert the Paramecium TAA/TAG-Gln triplets to CAA/CAG, together with partial gene synthesis, the gene from Paramecium was heterologously expressed. In Sf9 cells, the holoenzyme is proteolytically processed into the two domains. Immunocytochemistry demonstrates expression of the protein in Paramecium and localizes it to cell surface membranes. The data provide a novel structural link between class III adenylyl and guanylyl cyclases and imply that the protozoan guanylyl cyclases evolved from an ancestral adenylyl cyclase independently of the mammalian guanylyl cyclase isoforms. Further, signal transmission in Ciliophora (Paramecium, Tetrahymena) and in the most important endoparasitic phylum Apicomplexa (Plasmodium) is, quite unexpectedly, closely related.  相似文献   

8.
The primary structure ofTetrahymena thermophila 5S rRNA is reported. A secondary structure model is presented which can encompass most published eukaryotic 5S rRNA sequences. Unlike other eukaryotic 5S rRNAs,Tetrahymena is found to contain the sequence-CGAAC- beginning at position 40. The presence of this segment had previously been thought to be an exclusive characteristic of eubacterial 5S rRNAs.  相似文献   

9.
The Past-President's Address has been the opportunity for the speaker to reminisce about the road traveled to get to this time in life. In this paper, I continue in that tradition. During my journey to the present day, I visited different laboratories, studying the genetics of mating and mating types in Paramecium, Tetrahymena, Blepharisma and Euplotes. I have met and worked with many distinguished scientists, including other Past-Presidents of the Society. I also became an active participant in the Society of Protozoologists. I hope the recounting of my trip will be both entertaining and enlightening.  相似文献   

10.
We have determined the complete sequence of the nuclear gene encoding the small subunit (17 S) rRNA of the ciliated protozoan Tetrahymena thermophila. The gene encodes an RNA molecule which is 1753 nucleotides in length. The sequence of the Tetrahymena small subunit rRNA is homologous to those of other eukaryotes, and the predicted secondary structure for the molecule includes features which are characteristic of eukaryotic small subunit rRNAs. We have also determined the nature of two different mutations in the Tetrahymena 17 S gene which result in resistance to the aminoglycoside antibiotics paromomycin and hygromycin. In each case we have identified a single base change near the 3' end of the rRNA, within a region that is highly evolutionarily conserved in both sequence and secondary structure. Analysis of the effects of these mutations on rRNA structure, and of the impact of these drugs on translation, should help to elucidate the role of the small subunit ribosomal RNA in ribosome function.  相似文献   

11.
On the invasibility of persistent protist communities   总被引:1,自引:0,他引:1  
We investigate the rate of increase of protists introduced at low density into experimental communities comprising different sets of coexisting species. The experiment separates (1) the main effect of six introduced species, (2) the main effect of eleven resident communities, and (3) the introduction×community interaction. Introduced species differ markedly in their capacity to invade, and only one, Paramecium , invades all of the communities. Most of the introduced species invade some communities, and there is a large introduction×community interaction that comes about from bringing together particular combinations of species. For example, the rate of increase of Amoeba is greater when introduced into communities containing Paramecium than when introduced into communities in which Paramecium is absent. The omnivore Blepharisma increases faster in the presence of one of its prey Tetrahymena , notwithstanding the fact that it is also a potential competitor with this prey for bacteria. There is little indication that the species richness of resident communities (over the limited range available) affects the success of invasion. The results suggest that understanding invasions depends as much on detailed knowledge of idiosyncratic biological interactions as on general properties of community structure.  相似文献   

12.
13.
Mature Paramecium mitochondrial large subunit rRNA consists of two stable segments: a 20 S segment described previously and a unique 283-base segment similar to 5.8 S rRNAs typically found in eucaryotic cytoplasmic RNA. pBR325 clones of both gene regions from both Paramecium primaurelia and Paramecium tetraurelia were sequenced and aligned. The gene segments lie adjacent to each other very near the replicative terminal end of the linear Paramecium mitochondrial genome and are transcribed from a common 23 S precursor. The precise gene ends were determined using nuclease S1 protection; the large subunit rRNA gene complex (consisting of "5.8 S-like" rRNA, a 19-26-base excised region, and 20 S rRNA) spans about 2654 base pairs. The gene complex is preceded by a 15-base poly(T) tract and terminates randomly within a 20-base A + T-rich segment immediately preceding the tRNATyr gene. The sequences from the two species were 4% divergent, the changes consisting of 59% transitions, 38% transversions, and 3% insertions or deletions. The sequences were aligned with Escherichia coli 23 S rRNA, and a secondary structure model is presented for the entire molecule based on structures proposed for E. coli 23 S rRNA.  相似文献   

14.
The ciliates Tetrahymena and Paramecium respond to strong depolarizing stimuli with Ca(2+)-based action potentials, ciliary reversals, and consequent bouts of backward and forward swimming called "avoidance reactions" (ARs). We found that several representative tastants and odorants cause repetitive ARs in Tetrahymena and Paramecium at low (nM to microM) concentrations. Tetrahymena responded well to capsaicin, quinine, quinacrine, denatonium benzoate, eugenol, piperine, chloroquine, carvacrol, allyl isothiocyanate (AITC), and menthol. Chemosensory adaptation was seen with carvacrol, eugenol, quinacrine, and capsaicin. Cross-adaptation was seen between some of these compounds, suggesting possible similarities in their chemosensory transduction or adaptation pathways. Paramecium only responded well to AITC, quinacrine, piperine, and eugenol (with the effective concentration for 50% response [EC(50)] values in the microM range) while chemosensory adaptation was only seen to eugenol in Paramecium, suggesting possible species differences. Tetrahymena and Paramecium may have primitive receptors that can recognize these and other compounds or some of these compounds can act independently of specific receptors.  相似文献   

15.
The nucleotide sequences of the 5S rRNAs of Tetrahymena thermophila and two strains of T. pyriformis have been determined to be identical. The 5.8S rRNA sequences have also been determined; these sequences correct several errors in an earlier report. The 5.8S rRNAs of the two species differ at a single position. The sequencing results indicate that the species are of recent common ancestry. Molecular evidence that has been interpreted in the past as suggestive of an ancient divergence has been reviewed and found to be consistent with a T. pyriformis complex radiation beginning approximately 30-40 million years ago.  相似文献   

16.
17.
The sequence and structure of the large (20s) mitochondrial (mt) rRNA gene and flanking regions from Paramecium primaurelia have been determined. The gene contains two regions of strong homology with other large mt rRNAs: one 44-base region near the 5' end and a 321-base region near the 3' end. Another region of strong homology to both ends of E. coli 23s RNA exists at loci consistent with these regions. The Paramecium gene appears to be 2204 bases in length and contains slightly more homology to E. coli rRNA than its mammalian or fungal counterparts. The gene, located about 1200 bp from the replicative terminal end of the linear mt DNA, is transcribed in the same polarity as replication. Previous R-looping studies detected no large introns within the gene. Here we describe sequences resembling degenerate rRNAs, one of which could represent a small intron. A tRNA tyr gene was found on the same DNA strand, 127 bp downstream from the large rRNA presumptive 3' end. The tRNA is flanked on both sides by short DNA regions of approximately 90% A + T content.  相似文献   

18.
Regions extremely variable in size and sequence occur at conserved locations in eukaryotic rRNAs. The functional importance of one such region was determined by gene reconstruction and replacement in Tetrahymena thermophila. Deletion of the D8 region of the large-subunit rRNA inactivates T. thermophila rRNA genes (rDNA): transformants containing only this type of rDNA are unable to grow. Replacement with an unrelated sequence of similar size or a variable region from a different position in the rRNA also inactivated the rDNA. Mutant rRNAs resulting from such constructs were present only in precursor forms, suggesting that these rRNAs are deficient in either processing or stabilization of the mature form. Replacement with D8 regions from three other organisms restored function, even though the sequences are very different. Thus, these D8 regions share an essential functional feature that is not reflected in their primary sequences. Similar tertiary structures may be the quality these sequences share that allows them to function interchangeably.  相似文献   

19.
20.
We have identified, cloned and sequenced the three ribosomal RNA (rRNA) operons (rrn) present in the facultative photoheterotroph Rhodobacter sphaeroides. DNA sequence analysis has identified the 16S, 23S, and 5S rRNAs, two tRNAs (ile and ala) in the spacer region between the 16S and 23S rRNAs, and an f-met tRNA immediately following the 5S rRNA gene of all three operons. Physical mapping, genetic analysis, and Southern hybridization data indicate that rrnA is contained on a large chromosome and rrnB and rrnC are contained on a second smaller chromosome. These findings are discussed in relation to the origins of diploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号