首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sheep-urine-induced changes in soil microbial community structure   总被引:1,自引:0,他引:1  
Soil microbial communities play an important role in nutrient cycling and nutrient availability, especially in unimproved soils. In grazed pastures, sheep urine causes local changes in nutrient concentration which may be a source of heterogeneity in microbial community structure. In the present study, we investigated the effects of synthetic urine on soil microbial community structure, using physiological (community level physiological profiling, CLPP), biochemical (phospholipid fatty acid analysis, PLFA) and molecular (denaturing gradient gel electrophoresis, DGGE) fingerprinting methods. PLFA data suggested that synthetic urine treatment had no significant effect on total microbial (total PLFA), total bacterial or fungal biomass; however, significant changes in microbial community structure were observed with both PLFA and DGGE data. PLFA data suggested that synthetic urine induced a shift towards communities with higher concentrations of branched fatty acids. DGGE banding patterns derived from control and treated soils differed, due to a higher proportion of DNA sequences migrating only to the upper regions of the gel in synthetic urine-treated samples. The shifts in community structure measured by PLFA and DGGE were significantly correlated with one another, suggesting that both datasets reflected the same changes in microbial communities. Synthetic urine treatment preferentially stimulated the use of rhizosphere-C in sole-carbon-source utilisation profiles. The changes caused by synthetic urine addition accounted for only 10-15% of the total variability in community structure, suggesting that overall microbial community structure was reasonably stable and that changes were confined to a small proportion of the communities.  相似文献   

2.
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the α-proteobacteria and Flexibacter-Cytophaga-Bacteroides phylum. α-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.  相似文献   

3.
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the alpha-proteobacteria and Flexibacter-Cytophaga-Bacteroides phylum. alpha-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.  相似文献   

4.
Elevated CO2 generally increases plant productivity, and has been found to alter plant community composition in many ecosystems. Because soil microbes depend on plant-derived C and are often associated with specific plant species, elevated CO2 has the potential to alter structure and functioning of soil microbial communities. We investigated soil microbial community structure of a species-rich semi-natural calcareous grassland that had been exposed to elevated CO2 (600 μL L?1) for 6 growing seasons. We analysed microbial community structure using phospholipid fatty acid (PLFA) profiles and DNA fingerprints obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA fragments amplified by the Polymerase Chain Reaction (PCR). PLFA profiles were not affected by CO2 enrichment and the ratio of fungal and bacterial PLFA did not change. Ordination analysis of DNA fingerprints revealed a significant relation between CO2 enrichment and variation in DNA fingerprints in summer (P=0.01), but not in spring. This variation was due to changes in low-intensity bands, while dominant bands did not differ between CO2 treatments. Diversity of the bacterial community, as assessed by number of bands in DNA fingerprints and calculation of Shannon diversity indices, was not affected by elevated CO2. Overall, only minor effects on microbial community structure were detected, corroborating earlier findings that soil carbon inputs did probably change much less than suggested by plant photosynthetic responses.  相似文献   

5.
利用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术和磷脂脂肪酸(PLFA)分析方法,比较了北京通州、顺义、昌平、延庆地区甘薯叶际细菌的多样性和生物量,并调查了通州地区甘薯叶际细菌群落在不同生长季节的变化情况。PLFA分析结果发现所有检测样品中,革兰氏阳性细菌生物量均高于革兰氏阴性细菌生物量。PCR-DGGE方法与PLFA方法聚类分析结果较一致,甘薯叶际细菌群落结构受到时空因素、甘薯生理特性等的影响,不同地点、不同生长季节甘薯叶际细菌群落结构有较大差异,DGGE条带测序分析表明,Pseudomonas sp.在不同地点的甘薯叶际均为保守菌群,Bacillus sp.,Acinetobacter sp.,  相似文献   

6.
AIMS: To evaluate the effect of plant variety and Azospirillum brasilense inoculation on the microbial communities colonizing roots and leaves of tomato (Lycopersicon esculentum Mill.) plants. METHODS AND RESULTS: Seeds of cherry and fresh-market tomato were inoculated with A. brasilense BNM65. Sixty days after planting, plants were harvested and the microbial communities of the rhizoplane and phyllosphere were analysed by community-level physiological profiles (CLPP) using BIOLOG EcoPlates and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Differences on the rhizoplane and phyllosphere bacterial communities between the two tomato types were detected by principal component analysis of the CLPP; DGGE fingerprints also showed differences at the phyllosphere level. Fresh-market tomato had a more complex phyllosphere bacterial community than cherry tomato, as determined by DGGE profiles. Physiological and genetic changes on phyllosphere and rhizoplane bacterial communities by Azospirillum seed inoculation were evident only on cherry tomato. CONCLUSIONS: Tomato genotype affects the response of native bacterial communities associated with the roots and leaves to A. brasilense seed inoculation. SIGNIFICANCE AND IMPACT OF THE STUDY: The successful implementation of Azospirillum inoculation requires not only the consideration of the interactions between A. brasilense strains and plant genotypes, but also the plant-associated microflora.  相似文献   

7.
Impact of fumigants on soil microbial communities.   总被引:12,自引:0,他引:12  
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

8.
Denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analytical methods were applied to investigate the spatial variation of bacterial community structure in the Pearl River estuary sediment and to address the relationship between microbial community composition and bottom water chemistry in ten different stations. Preliminary results of sequencing analysis of the excised DGGE bands suggested that α-Proteobacteria, γ-Proteobacteria, Acidobacteria and Actinobacteria were the dominant bacterial groups in the Pearl River estuary sediment. Results of multidimensional scaling analysis of these field data suggested that the composition of bacterial communities varied with sampling sites. Finally, canonical correspondence analysis of the data of environmental variables and bacterial community suggested that bacterial community structure was significantly influenced by the change of environmental variables (total phosphorus, nitrite, ammonium, dissolved oxygen, pH and salinity).  相似文献   

9.
The effect of genetically modified (GM) Brassica rapa subsp. pekinensis (Chinese cabbage) expressing Bt toxin gene (cry1AC) to the rhizosphere bacterial community was examined using the denaturing gradient gel electrophoresis (DGGE) fingerprinting method. From the visual comparison of the DGGE profiles, there were no significant differences between the profiles of Bt and control rhizosphere in both Suwon and Yesan samples. From the sequence analysis of the individual bands, Sphingomonas sp. of Alphaproteobacteria and several actinobacterial members were identified as the main bacterial taxa in both Suwon and Yesan samples. In the multiple correspondence analysis, no clear separation between Bt and control rhizosphere was seen in both Suwon and Yesan datasets. The profiles of bulk soils were separated from those of rhizosphere. The DGGE fingerprinting analyses indicated that Bt crops did not significantly alter the genetic composition of rhizosphere bacterial communities.  相似文献   

10.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66 degrees S, 143 degrees E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15 degrees C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

11.
Total and culturable rhizosphere microbial communities structure from three different genotypes of Arabidopsis thaliana growing on three different substrates was studied with phospholipid fatty acid analysis (PLFA) and multivariate statistical analyses: correspondence analysis (CA) and distance based redundancy analyses (db-RDA). In addition, microbial biomass from different groups (total bacteria, Gram+, Gram? and fungi) was calculated from biomarkers PLFA peak area, both from total and culturable microbial community. db-RDA analysis showed significant differences between soils but not between plant genotypes for culturable microbial community structure. Total microbial community was significantly different between soils, and also between plant lines in each soil. Biomass of different bacterial groups showed significant higher values in soil two rhizosphere irrespective of the plant line. In addition, significant differences between plant lines were also found for microbial biomass of different bacterial groups both in total and culturable microbial community. Throughout the work we have demonstrated that PLFA analysis has been able to show a different behaviour of total microbial community with regard to the culturable fraction analyzed in this work under the influence of plant roots. Microbial biomass of different microbial groups calculated with PLFA biomarkers was a suitable tool to detect differences between soils irrespective of the plant line, and differences in the same soil between plant lines. According to this data, a previous study should be carried out before GMPs are used in field conditions to evaluate the potential alterations that may take place on rhizosphere microbial communities structure which may further affect soil productivity. In conclusion, based on data presented in this work, GMPs alter rhizosphere microbial communities structure and this effect is different depending on the soil. Furthermore, total microbial community is affected to a greater extent than the culturable fraction analyzed.  相似文献   

12.
Impact of Fumigants on Soil Microbial Communities   总被引:11,自引:1,他引:11       下载免费PDF全文
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

13.

Aims

To study the relationship between vegetation development and changes in the soil microbial community during primary succession in a volcanic desert, we examined successional changes in microbial respiration, biomass, and community structure in a volcanic desert on Mount Fuji, Japan.

Methods

Soil samples were collected from six successional stages, including isolated island-like plant communities. We measured microbial respiration and performed phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and community-level physiological profile (CLPP) analysis using Biolog microplates.

Results

Microbial biomass (total PLFA content) increased during plant succession and was positively correlated with soil properties including soil water and soil organic matter (SOM) contents. The microbial respiration rate per unit biomass decreased during succession. Nonmetric multidimensional scaling based on the PLFA, DGGE, and CLPP analyses showed a substantial shift in microbial community structure as a result of initial colonization by the pioneer herb Polygonum cuspidatum and subsequent colonization by Larix kaempferi into central areas of island-like communities. These shifts in microbial community structure probably reflect differences in SOM quality.

Conclusions

Microbial succession in the volcanic desert of Mt. Fuji was initially strongly affected by colonization of the pioneer herbaceous plant (P. cuspidatum) associated with substantial changes in the soil environment. Subsequent changes in vegetation, including the invasion of shrubs such as L. kaempferi, also affected the microbial community structure.  相似文献   

14.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66°S, 143°E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15°C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

15.
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.  相似文献   

16.
To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.  相似文献   

17.
Abstract The structure, biomass, and activity of the microbial community in the humus layer of boreal coniferous forest stands of different fertility were studied. The Scots pine dominated CT (Calluna vulgaris type) represented the lowest fertility, while VT (Vaccinium vitis-idaéa type), MT (Vaccinium myrtillus type), and OMT (Oxalis acetocella–Vaccinium myrtillus type) following this order, were more fertile types. The microbial community was studied more closely by sampling a succession gradient (from a treeless area to a 180-years-old Norway spruce stand) at the MT type site. The phospholipid fatty acid (PLFA) analysis revealed a gradual shift in the structure of the microbial community along the fertility gradient even though the total microbial biomass and respiration rate remained unchanged. The relative abundance of fungi decreased and that of bacteria increased with increasing fertility. The structure of the bacterial community also changed along the fertility gradient. Irrespective of a decrease in fungal biomass and change in bacterial community structure after clear-cutting, the PLFA analysis did not show strong differences in the microbial communities in the stands of different age growing on the MT type site. The spatial variation in the structure of the microbial community was studied at a MT type site. Semivariograms indicated that the bacterial biomass, the ratio between the fungal and bacterial biomasses, and the relative amount of PLFA 16:1ω5 were spatially autocorrelated within distances around 3 to 4 m. The total microbial and fungal biomasses were autocorrelated only up to 1 m. The spatial distribution of the humus microbial community was correlated mainly with the location of the trees, and consequently, with the forest floor vegetation. Received: 9 November 1998; Accepted: 26 April 1999  相似文献   

18.
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.  相似文献   

19.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

20.
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号