首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two enzymes catalyze the two step reactions in the D-galactonate nonphosphorolytic catabolic pathway ofAspergillus terreus, namely D-galactonate dehydratase and 2-keto-3-deoxy-D-galactonate (KDGal) aldolase. Maximum enzyme activities were obtained at 40° C and pH 8.0 or at 50° C and pH 7.5 for these two enzymes, respectively. Stability of the two enzymes under different conditions was investigated. From a Lineweaver-Burk plot of the reciprocal of initial velocities and substrate concentrations, apparent K m values were calculated for D-galactonate, pyruvate and glyceraldehyde and found to be 8.33, 14.28 and 5.55 mM, respectively, in crude cell-free extracts. Results indicated the requirement of magnesium cation for D-galactonate dehydratase activity at an initial concentration of 10–2 M. The presence of Mg2+ in the reaction mixture seems to induce greatly the fitness of the dehydratase with D-galactonate as no activity could be detected with 24-h dialyzed extract in the absence of magnesium cation.  相似文献   

2.
Pathway for D-galactonate catabolism in nonpathogenic mycobacteria.   总被引:1,自引:0,他引:1       下载免费PDF全文
D-Galactonate is catabolized in saprophytic mycobacteria to give pyruvate and glyceraldehyde-3-phosphate by a pathway that involves the sequential reactions of galactonate dehydratase, 2-keto-3-deoxy-galactonate kinase, and 6-phospho-2-keto-3-deoxy-galactonate aldolase.  相似文献   

3.
Ten Aspergilli and Penicillia were tested for the capabilities of their extracts in degrading L-arabinose or L-arabonate nonphosphorolytically. L-arabonate dehydratase was nearly absent, while the reverse reaction of 2-keto-3-deoxy-L-arabonate (KDA) aldolase was operative in extracts of all the tested organisms grown on L-arabinose or L-arabonate as the sole carbon source. Degradation of different related substrates by cell-free extracts of Aspergillus ustus showed that L-arabonate, D-gluconate, D-galactonate and D-galactonic acid-γ-lactone were degraded under these conditions. Chromatographic studies identified the L-arabonate degrading products of such degradation in A. ustus as KDA (traces), pyruvic acid and α-ketoglutaric acid.  相似文献   

4.
A method is described for the detection of 2-keto-4-hydroxyglutarate aldolase activity after electrophoresis of the enzyme on polyacrylamide gels. When gels are incubated with substrate (2-keto-4-hydroxyglutarate), activity is seen as a yellow-colored band due to interaction of the product )glyoxylate) with ortho-aminobenzaldehyde and glycine. Positive results have been obtained using either crude cell-free preparations or homogeneous enzyme from Escherichia coli as well as with highly purified samples of aldolase from bovine liver or kidney extracts. The method is potentially applicable to other aldolases that liberate an aliphatic aldehyde as a product; modifications and limitations of the procedure for detecting fructose 1,6-diphosphate aldolase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and 2-deoxyribose-5-phosphate aldolase activities have been explored.  相似文献   

5.
Caulobacter crescentus wild-type strain CB13 is unable to utilize galactose as the sole carbon source unless derivatives of cyclic AMP are present. Spontaneous mutants have been isolated which are able to grow on galactose in the absence of exogenous cyclic nucleotides. These mutants and the wild-type strain were used to determine the pathway of galactose catabolism in this organism. It is shown here that C. crescentus catabolizes galactose by the Entner-Duodoroff pathway. Galactose is initially converted to galactonate by galactose dehydrogenase and then 2-keto-3-deoxy-6-phosphogalactonate aldolase catalyzes the hydrolysis of 2-keto-3-deoxy-6-phosphogalactonic acid to yield triose phosphate and pyruvate. Two enzymes of galactose catabolism, galactose dehydrogenase and 2-keto-3-deoxy-6-phosphogalactonate aldolase, were shown to be inducible and independently regulated. Furthermore, galactose uptake was observed to be regulated independently of the galactose catabolic enzymes.  相似文献   

6.
A novel bacterial in vivo selection for pyruvate aldolase activity is described. Pyruvate kinase deficient cells, which lack the ability to biosynthetically generate pyruvate, require supplementation of exogenous pyruvate when grown on ribose. Supplementation with pyruvate concentrations as low as 50 microM rescues cell growth. A known substrate of the KDPG aldolases, 2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (KHPB), also rescues cell growth, consistent with retroaldol cleavage by KDPG aldolase and rescue through pyruvate release. An initial round of selection against 2-keto-4-hydroxyoctonate (KHO), a nonsubstrate for wild-type aldolase, produced three mutants with intriguing alterations in protein sequence. This selection system allows rapid screening of mutant enzyme libraries and facilitates the discovery of enzymes with novel substrate specificities.  相似文献   

7.
Two short local reconnections in the backbone chain tracing of 2-keto-3-deoxy-6-phosphogluconate aldolase suffice to make it an 8-stranded parallel β barrel whose size, shape, topology, and connection handedness match those of triose phosphate isomerase and of the first domain of pyruvate kinase. It is proposed that this singly-wound parallel β barrel is in fact the tertiary structure of the aldolase subunit.  相似文献   

8.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.  相似文献   

9.
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.  相似文献   

10.
Five clostridial species were found to ferment gluconate via 2-keto-3-deoxygluconate which subsequently is phosphorylated to yield 2-keto-3-deoxy-6-phosphogluconate (KDPG). This compound is then cleaved by KDPG aldolase.  相似文献   

11.
The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol L-glucitol to D-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels L-glucitol via D-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. D-Sorbose was converted by C-3 epimerization to D-tagatose, which, in turn, was isomerized to D-galactose. D-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of D-galactose to D-galactonate, its dehydration to 2-keto-3-deoxy-D-galactonate, and its phosphorylation to 2-keto-3-deoxy-D-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and D-glycerate 3-phosphate as the central metabolic intermediates.  相似文献   

12.
Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order. Cyclohexanedione is the most effective modifier; a plot of log (1000/t 1/2) versus log [cyclohexanedione] gives a straight line with slope = 1.1, indicating that one molecule of modifier reacts with each active unit of enzyme. The kinetics of inactivation are first order with respect to cyclohexanedione, suggesting that the loss of activity is due to modification of 1 arginine residue/subunit. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced structural alteration of the aldolase. The same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. Amino acid analyses of 95% inactivated aldolase show the loss of 1 arginine/subunit with no significant change in other amino acid residues. Considerable protection against inactivation is provided by the substrates 2-keto-4-hydroxyglutarate and pyruvate (75 and 50%, respectively) and to a lesser extent (40 and 35%, respectively) by analogs like 2-keto-4-hydroxybutyrate and 2-keto-3-deoxyarabonate. In contrast, formaldehyde or glycolaldehyde (analogs of glyoxylate) under similar conditions show no protective effect. These results indicate that an arginine residue is required for E. coli 2-keto-4-hydroxyglutarate aldolase activity; it most likely participates in the active site of the enzyme by interacting with the carboxylate anion of the pyruvate-forming moiety of 2-keto-4-hydroxyglutarate.  相似文献   

13.
Galactose metabolism in Rhizobium meliloti L5-30.   总被引:1,自引:0,他引:1       下载免费PDF全文
Data from previous studies of Rhizobium meliloti mutants have been consistent with the catabolism of hexoses via the Entner-Doudoroff pathway. However, galactose metabolism was not impaired in those mutants. We show here by enzymatic assay and by identification of a galactose mutant lacking 2-keto-3-deoxy-6-phosphogalactonate aldolase that the De Ley-Doudoroff pathway is used for galactose metabolism. Mutants in this pathway have not been previously reported for any organism.  相似文献   

14.
Pure 2-keto-4-hydroxyglutarate aldolase of Escherichia coli, a "lysine-type" trimeric enzyme which has the unique properties of forming an "abortive" Schiff-base intermediate with glyoxylate (the aldehydic product/substrate) and of showing strong beta-decarboxylase activity toward oxalacetate, binds any one of its substrates (2-keto-4-hydroxyglutarate, pyruvate, or glyoxylate) in a competitive manner. To determine whether the substrates bind at the same or different (juxta-positioned) sites and what degree of homology might exist between the active-site lysine peptide of this enzyme and that of other lysine-type (Class I) aldolases or beta-decarboxylases, the azomethine formed separately by this aldolase with either [14C]pyruvate or [14C]glyoxylate was reduced with CNBH3-. After each enzyme adduct was digested with trypsin, the 14C-labeled peptide was isolated, purified, and subjected to amino acid analysis and sequence determination. In each case, the same 14-amino acid lysine-peptide was isolated and found to have the following primary sequence: Glu-Phe-*Lys-Phe-Phe-Pro-Ala-Glu-Ala-Asn-Gly-Gly-Val-Lys (where * = the active-site lysine). Hence, glyoxylate competes for, and inhibits aldolase activity by reacting with, the one active-site lysine residue/subunit. This active-site lysine peptide has a high degree (65%) of homology with that of 2-keto-3-deoxy-6-phosphogluconate aldolase of Pseudomonas putida but is not similar to that of any Class I fructose-1,6-bisphosphate aldolase or of acetoacetate beta-decarboxylase of Clostridium acetobutylicum. Furthermore, it was found that extensive reaction of glyoxylate with the N-terminal amino group of this enzyme may well be general complicating factor in sequence studies with proteins plus glyoxylate.  相似文献   

15.
The activities of enzymes of carbohydrate metabolism, enzymes of the tricarboxylic acid cycle and some related enzymes were measured in cell-free extracts of strain TK-6, an extremely thermophilic, obligately autotrophic, aerobic hydrogen-oxidizing bacterium. Activities of phosphofructokinase, aldolase, pyruvate kinase, 6-phosphogluconate dehydrase and 2-keto-3-deoxy-6-phosphogluconate aldolase, key enzymes of the Embden-Meyerhof and the Entner-Doudoroff pathways were not found in the extracts. All of the tricarboxylic acid cycle enzymes except α-ketoglutarate dehydrogenase, and reduced nicotinamide adenine dinucleotide oxidase were present. These metabolic defects are considered to be one of the reasons for the obligate autotrophy of strain TK-6.  相似文献   

16.
2-Keto-4-hydroxyglutarate aldolase, which catalyzes the reversible cleavage of 2-keto-4-hydroxyglutarate, yielding pyruvate plus glyoxylate, has been purified from extracts of bovine kidney to apparent homogeneity as judged by polyacrylamide gel electrophoresis, gel filtration chromatography, sucrose density gradient centrifugation, and meniscus depletion sedimentation equilibrium experiments. The enzyme from this source has a native and a subunit mass of 144 and 36 kDa, respectively; the pH-activity optimum is 8.8. Rather than being stimulated, aldolase activity is inhibited to varying degrees by added divalent metal ions, whereas a number of metal ion-chelating agents have no effect. An absolute requirement for added thiol compounds could not be shown, but 2-mercaptoethanol enhances activity 2-fold, and added Hg2+ as well as p-mercuribenzoate or dithiodipyridine markedly inhibit catalysis. Incubation of the enzyme with either pyruvate or glyoxylate in the presence of NaBH4 causes extensive loss of aldolase activity concomitant with stable binding of approximately 1.0-1.5 mol of 14C-labeled substrate/mol of enzyme. The circular dichroism spectrum for native aldolase is characteristic of an alpha-helix; incubation of the enzyme with glyoxylate has no effect on this spectrum, but it is considerably altered by pyruvate. Bovine kidney aldolase shows no stereospecificity in catalyzing the aldol cleavage of the two optical isomers of 2-keto-4-hydroxyglutarate, and although it also catalyzes the beta-decarboxylation of oxalacetate, its decarboxylase/aldolase activity ratio is lower than that seen with the pure enzyme from either bovine liver or Escherichia coli.  相似文献   

17.
Carbon-carbon bond forming enzymes offer great potential for organic biosynthesis. Hence there is an ongoing effort to improve their biocatalytic properties, regarding availability, activity, stability, and substrate specificity and selectivity. Aldolases belong to the class of C-C bond forming enzymes and play important roles in numerous cellular processes. In several hyperthermophilic Archaea the 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolase was identified as a key player in the metabolic pathway. The carbohydrate metabolism of the hyperthermophilic Crenarchaeote Thermoproteus tenax, for example, has been found to employ a combination of a variant of the Embden-Meyerhof-Parnas pathway and an unusual branched Entner-Doudoroff pathway that harbors a nonphosphorylative and a semiphosphorylative branch. The KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. In T. tenax initial studies revealed that the pathway is specific for glucose, whereas in the thermoacidophilic Crenarchaeote Sulfolobus solfataricus the pathway was shown to be promiscuous for glucose and galactose degradation. The KD(P)G aldolase of S. solfataricus lacks stereo control and displays additional activity with 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal), similar to the KD(P)G aldolase of Sulfolobus acidocaldarius. To address the stereo control of the T. tenax enzyme the formation of the two C4 epimers KDG and KDGal was analyzed via gas chromatography combined with mass spectroscopy. Furthermore, the crystal structure of the apoprotein was determined to a resolution of 2.0 A, and the crystal structure of the protein covalently linked to a pathway intermediate, namely pyruvate, was determined to 2.2 A. Interestingly, although the pathway seems to be specific for glucose in T. tenax the enzyme apparently also lacks stereo control, suggesting that the enzyme is a trade-off between required catabolic flexibility needed for the conversion of phosphorylated and nonphosphorylated substrates and required stereo control of cellular/physiological enzymatic reactions.  相似文献   

18.
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.  相似文献   

19.
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.  相似文献   

20.
Cheriyan M  Toone EJ  Fierke CA 《Biochemistry》2012,51(8):1658-1668
The substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of Escherichia coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S and S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (S-KHPB). These mutations improve the value of k(cat)/K(M)(S-KHPB) by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of k(cat)(S-KHPB) for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximal value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate, a nonfunctionalized hydrophobic analogue. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate aldolases. Furthermore, targeting mutations to the active site provides a marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to those of naturally occurring enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号