首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of rat carbamyl phosphate synthetase I mRNA has been determined from the complementary DNA. The mRNA comprises minimally 5,645 nucleotides and codes for a polypeptide of 164,564 Da corresponding to the precursor form of the rat liver enzyme. The primary sequence of mature rat carbamyl phosphate synthetase I indicates that the precursor is cleaved at one of two leucines at residues 38 or 39. The derived amino acid sequence of carbamyl phosphate synthetase I is homologous to the sequences of carbamyl phosphate synthetase of Escherichia coli and yeast. The sequence homology extends along the entire length of the rat polypeptide and encompasses the entire sequences of both the small and large subunits of the E. coli and yeast enzymes. The protein sequence data provide strong evidence that the carbamyl phosphate synthetase I gene of rat, the carAB gene of E. coli, and the CPA1 and CPA2 genes of yeast were derived from common ancestral genes. Part of the rat carbamyl phosphate synthetase I gene has been characterized with two nonoverlapping phage clones spanning 28.7 kilobases of rat chromosomal DNA. This region contains 13 exons ranging in size from 68 to 195 base pairs and encodes the 453 carboxyl-terminal amino acids of the rat protein. Southern hybridization analysis of rat genomic DNA indicates the carbamyl phosphate synthetase I gene to be present in single copy.  相似文献   

2.
3.
4.
Methanosarcina barkeri 227 possesses two clusters of genes potentially encoding nitrogenases. We have previously demonstrated that one cluster, called nif2, is expressed under molybdenum (Mo)-sufficient conditions, and the deduced amino acid sequences for nitrogenase structural genes in that cluster most closely resemble those for the Mo nitrogenase of the gram-positive eubacterium Clostridium pasteurianum. The previously cloned nifH1 from M. barkeri shows phylogenetic relationships with genes encoding components of eubacterial Mo-independent eubacterial alternative nitrogenases and other methanogen nitrogenases. In this study, we cloned and sequenced nifD1 and part of nifK1 from M. barkeri 227. The deduced amino acid sequence encoded by nifD1 from M. barkeri showed great similarity with vnfD gene products from vanadium (V) nitrogenases, with an 80% identity at the amino acid level with the vnfD gene product from Anabaena variabilis. Moreover, there was a small open reading frame located between nifD1 and nifK1 with clear homology to vnfG, a hallmark of eubacterial alternative nitrogenases. Stimulation of diazotrophic growth of M. barkeri 227 by V in the absence of Mo was demonstrated. The unusual complement of nif genes in M. barkeri 227, with one cluster resembling that from a gram-positive eubacterium and the other resembling a eubacterial V nitrogenase gene cluster, suggests horizontal genetic transfer of those genes.  相似文献   

5.
Currently, only one selectable marker is available for genetic studies in the archaeal genus Methanosarcina. Here we report the generation of selectable markers that encode resistance to pseudomonic acid (PA(r)) in Methanosarcina species by mutagenesis of the isoleucyl-tRNA synthetase gene (ileS) from Methanosarcina barkeri Fusaro. The M. barkeri ileS gene was obtained by screening of a genomic library for hybridization to a PCR fragment. The complete 3,787-bp DNA sequence surrounding and including the ileS gene was determined. As expected, M. barkeri IleS is phylogenetically related to other archaeal IleS proteins. The ileS gene was cloned into a Methanosarcina-Escherichia coli shuttle vector and mutagenized with hydroxylamine. Nine independent PA(r) clones were isolated after transformation of Methanosarcina acetivorans C2A with the mutagenized plasmids. Seven of these clones carry multiple changes from the wild-type sequence. Most mutations that confer PA(r) were shown to alter amino acid residues near the KMSKS consensus sequence of class I aminoacyl-tRNA synthetases. One particular mutation (G594E) was present in all but one of the PA(r) clones. The MIC of pseudomonic acid for M. acetivorans transformed with a plasmid carrying this single mutation is 70 microgram/ml of medium (for the wild type, the MIC is 12 microgram/ml). The highest MICs (560 microgram/ml) were observed with two triple mutants, A440V/A482T/G594E and A440V/G593D/G594E. Plasmid shuttle vectors and insertion cassettes that encode PA(r) based on the mutant ileS alleles are described. Finally, the implications of the specific mutations we isolated with respect to binding of pseudomonic acid by IleS are discussed.  相似文献   

6.
中华鳖4个Sox基因保守区的序列分析   总被引:14,自引:2,他引:12  
采用PCR技术,扩增和克隆了中华鳖Sox基因(TSSox)。经DNA序列分析显示,Sox基因在系统进化上十分保守,其中TSSox4与鸟类LF4基因编码的氨基酸序列完全相同、与人类SOX4和Sox4编码的序列仅一个氨基酸的差异;TSSox5与鸟类的LF5基因的编码也仅一个氨基酸发生了改变;TSSox2与海龟的TSox2相似性最高。4条TSSox序列中,TSSox与人SRY基因序列相似性最高,达75%;序列上的相似性可能暗示了它们在功能上的保守性。  相似文献   

7.
The yeast gene CPA1 coding for the small subunit of arginine-specific carbamyl phosphate synthetase has been cloned by complementation of a cpa 1 mutant with a plasmid library of total yeast chromosomal DNA. Two of the plasmids, pJL113/ST4 and pJL113/ST15, contain DNA inserts in opposite orientations with overlapping sequences of 2.6 kilobases. The nucleotide sequence of a 2.2-kilobase region of the DNA insert carrying the CPA1 gene has been determined. The CPA1 gene has been identified to be 1233 nucleotides long and to code for a polypeptide of 411 amino acids with a calculated molecular weight of 45,358. The amino acid sequence encoded in CPA1 is homologous to the recently determined sequence of the small subunit of Escherichia coli carbamyl phosphate synthetase (Piette, J., Nyunoya, H., Lusty, C.J., Cunin, R., Weyens, G., Crabeel, M., Charlier, D., Glandsdorff, N., and Pierard, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4134-4138) over the entire length of the polypeptide chain. Comparison of the amino acid sequences of the small subunits of yeast and E. coli carbamyl phosphate synthetases to the sequences of Component II of anthranilate and p-aminobenzoate synthases suggests that these amidotransferases are evolutionarily related. The most highly conserved region of the yeast and E. coli enzymes includes a cysteine residue previously found to be at the active site of Pseudomonas putida anthranilate synthase Component II (Kawamura, M., Keim, P.S., Goto, Y., Zalkin, H., and Heinrikson, R.L. (1978) J. Biol. Chem. 253, 4659-4668). Based on the observed homologies in the primary sequences of the other amidotransferases examined, we propose a 13-amino acid long sequence to be part of the catalytic domain of this class of enzymes.  相似文献   

8.
Methanosarcina barkeri inserts pyrrolysine (Pyl) at an in-frame UAG codon in its monomethylamine methyltransferase gene. Pyrrolysyl-tRNA synthetase acylates Pyl onto tRNAPyl, the amber suppressor pyrrolysine Pyl tRNA. Here we show that M. barkeri Fusaro tRNAPyl can be misacylated with serine by the M. barkeri bacterial-type seryl-tRNA synthetase in vitro and in vivo in Escherichia coli. Compared to the M. barkeri Fusaro tRNA, the M. barkeri MS tRNAPyl contains two base changes; a G3:U70 pair, the known identity element for E. coli alanyl-tRNA synthetase (AlaRS). While M. barkeri MS tRNAPyl cannot be alanylated by E. coli AlaRS, mutation of the MS tRNAPyl A4:U69 pair into C4:G69 allows aminoacylation by E. coli AlaRS both in vitro and in vivo.  相似文献   

9.
Summary On the basis of homology, the mammalian CAD (glutamine-dependent carbamyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase) gene appears to have arisen from the fusion of four separate ancestral genes. Evidence for two of these precursor genes is found in the carbamyl phosphate synthetase (CPSase) domain of CAD. In prokaryotes, such as Escherichia coli CPSase is encoded by two distinct cistrons of the carAB operon. Whereas carA and carB are separated by a short noncoding intercistronic region, the homologous sequences of the CAD gene encode an amino acid bridge. This bridge connects the subdomains of the CAD CPSase. We constructed a bacterial carAB fusion gene in which the intercistronic region codes for a hamster bridgelike sequence. The fused carAB gene directs the synthesis of a stable bifunctional polypeptide whose glutamine-dependent CPSase activity is comparable to the E. coli CPSase holoenzyme. The fusion in E. coli of the single gene counterparts of CAD demonstrates a potential model system to study the genetic events that lead to gene fusion and the creation of multienzymatic proteins. Offprint requests to: J.N. Davidson  相似文献   

10.
Two alpha-tubulin genes from the budding yeast Saccharomyces cerevisiae were identified and cloned by cross-species DNA homology. Nucleotide sequencing studies revealed that the two genes, named TUB1 and TUB3, encoded gene products of 447 and 445 amino acids, respectively, that are highly homologous to alpha-tubulins from other species. Comparison of the sequences of the two genes revealed a 19% divergence between the nucleotide sequences and a 10% divergence between the amino acid sequences. Each gene had a single intervening sequence, located at an identical position in codon 9. Cell fractionation studies showed that both gene products were present in yeast microtubules. These two genes, along with the TUB2 beta-tubulin gene, probably encode the entire complement of tubulin in budding yeast cells.  相似文献   

11.
M Sumi  M H Sato  K Denda  T Date  M Yoshida 《FEBS letters》1992,314(3):207-210
A 490 bp DNA fragment was amplified from Methanosarcina barkeri genomic DNA by the polymerase chain reaction (PCR) using oligonucleotide primers designed based on conserved amino acid sequences of the F1-ATPase beta subunits. The amino acid sequence deduced from the DNA sequence of this fragment was highly homologous to a portion of the F1-ATPase beta subunit. This indicates that this archaebacterium has a gene of F-type ATPase in addition to a gene of V-type ATPase.  相似文献   

12.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

13.
Isolation and chromosomal localization of the human En-2 gene   总被引:1,自引:0,他引:1  
S J Poole  M L Law  F T Kao  Y F Lau 《Genomics》1989,4(3):225-231
By low stringency hybridization we have isolated from a human cosmid genomic library sequences homologous with a probe from the Drosophila engrailed gene. Partial nucleotide sequence analysis shows a consensus splice acceptor site followed by an open reading frame (ORF) that can encode 104 amino acids; the first 94 amino acids have 71% identity with the Drosophila engrailed protein. The shared region contains a homeo domain and is within the region of engrailed shared with the Drosophila invected gene and the mouse En-1 and En-2 genes. At the amino acid level, the human sequence is 85% identical with the mouse En-1 gene and 100% identical with the mouse En-2 gene. Hybridization against a panel of human-hamster somatic cell hybrids maps this human En-2 gene to chromosome 7, and regional mapping by in situ hybridization to human chromosomes localizes it to region 7q36 at the end of the long arm.  相似文献   

14.
Glutamine-dependent carbamoyl-phosphate synthetase (EC 6.3.5.5) catalyzes the first step in de novo pyrimidine biosynthesis. The mammalian enzyme is part of a 240-kDa multifunctional protein which also has the second (aspartate carbamoyltransferase, EC 2.1.3.2), and third (dihydroorotase, EC 3.5.2.3) activities of the pathway. Shigesada et al. (Shigesada, K., Stark, G.R., Maley, J.A., and Davidson, J.N. (1985) Mol. Cell Biol. 175, 1-7) produced a truncated cDNA clone from a Syrian hamster cell line that contained most of the coding region for this protein. We have completed sequencing this clone, known as pCAD142. The cDNA insert contained all of the coding region for the glutaminase (GLN) and carbamyl phosphate synthetase (CPS) domains but lacked a short amino-terminal segment. By comparing the primary structure of the mammalian chimera to monofunctional proteins we have identified the borders of the functional domains. The GLN domain is 21 kDa, close to the size of the functionally similar polypeptide products of the Escherichia coli pabA and hisH genes. The domain has the three regions of homology common to trpG-type glutamine amidotransferases, as well as a fourth region specific to the carbamyl phosphate synthetases. The CPSase domain is similar to other reported CPSases in size (120 kDa), primary structure (37-67% amino acid identity), and homology between its amino and carboxyl halves. Analysis of the nucleotide and amino acid sequence identities among the various carbamyl phosphate synthetases suggests that the gene fusion which joined the GLN and CPS domains was an early event in the evolution of eukaryotic organisms and that the Saccharomyces cerevisiae enzyme consisting of separate subunits arose by defusion from an ancestral multifunctional protein.  相似文献   

15.
The head piece of the A-type ATP synthase in an extremely halophilic archaebacterium, namely Halobacterium salinarium (halobium), is composed of two kinds of subunit, alpha and beta, and is associated with ATP-hydrolyzing activity. The genes encoding these subunits with hydrolytic activity have been cloned and sequenced. The putative amino acid sequences of the alpha and beta subunits deduced from the nucleotide sequences of the genomic DNA consist of 585 and 471 residues, respectively. The amino acid sequence of the alpha subunit of the halobacterial ATPase is 63 and 49% identical to the alpha subunits of ATPases from two other archaebacteria, Methanosarcina barkeri and Sulfolobus acidocaldarius, respectively. The sequence of the beta subunit is 66 and 55% identical to the beta subunits from these respective organisms. The homology between the alpha and beta subunits is around 30%. In contrast, the sequences of the halobacterial ATPase is less than 30% identical to F1 ATPase when any combination of subunits is considered. However, they are greater than 50% identical to a eukaryotic vacuolar ATPase when alpha and a, beta and b combinations are considered. These data fully confirm the first demonstration of this kind of relationship which was achieved by immunoblotting with an antibody raised against the halobacterial ATPase. We concluded that the archaebacterial ATP synthase is an A-type and not an F-type ATPase. This classification is also demonstrated by a "rooted" phylogenetic tree where halobacteria locate close to other archaebacteria and eukaryotes and distant from eubacteria.  相似文献   

16.
17.
We report here a comparative analysis of the genome sequence of Methanosarcina barkeri with those of Methanosarcina acetivorans and Methanosarcina mazei. The genome of M. barkeri is distinguished by having an organization that is well conserved with respect to the other Methanosarcina spp. in the region proximal to the origin of replication, with interspecies gene similarities as high as 95%. However, it is disordered and marked by increased transposase frequency and decreased gene synteny and gene density in the distal semigenome. Of the 3,680 open reading frames (ORFs) in M. barkeri, 746 had homologs with better than 80% identity to both M. acetivorans and M. mazei, while 128 nonhypothetical ORFs were unique (nonorthologous) among these species, including a complete formate dehydrogenase operon, genes required for N-acetylmuramic acid synthesis, a 14-gene gas vesicle cluster, and a bacterial-like P450-specific ferredoxin reductase cluster not previously observed or characterized for this genus. A cryptic 36-kbp plasmid sequence that contains an orc1 gene flanked by a presumptive origin of replication consisting of 38 tandem repeats of a 143-nucleotide motif was detected in M. barkeri. Three-way comparison of these genomes reveals differing mechanisms for the accrual of changes. Elongation of the relatively large M. acetivorans genome is the result of uniformly distributed multiple gene scale insertions and duplications, while the M. barkeri genome is characterized by localized inversions associated with the loss of gene content. In contrast, the short M. mazei genome most closely approximates the putative ancestral organizational state of these species.  相似文献   

18.
The complete nucleotide sequence of lysU, the gene for the heat-inducible lysyl-tRNA synthetase of Escherichia coli, was determined and compared with the published sequence of lysS (herC), the gene for the constitutive lysyl-tRNA synthetase. These unlinked genes were found to be identical over 72% of their lengths. The deduced amino acid sequences of the respective gene products, LysU and LysS, were identical over 85% and similar over 92% of their lengths. Accumulation of high levels of LysU during growth of strains carrying the wild-type allele of lysU on multicopy plasmids had no observable effect on growth or on the synthesis of LysS. A lysU deletion strain was constructed and was shown to grow normally at low temperature (28 degrees C) but poorly at 44 degrees C; the slow growth (45% of normal) at elevated temperature was fully reversed by plasmids bearing wild-type lysU. The implications of these findings for the existence of two aminoacyl-tRNA synthetases for lysine are discussed.  相似文献   

19.
The hamster CAD gene encodes a protein that catalyzes the first three steps of pyrimidine biosynthesis. We have sequenced a portion of a CAD cDNA and determined the location of the carbamyl phosphate synthetase II coding region. Subdomains coding for the glutamine hydrolyzing and carbamyl phosphate synthesizing functions have been identified through their high degree of similarity to carbamyl phosphate synthetase genes from a variety of organisms. The proline-rich junction between the glutaminase and synthetase domains, however, does not appear to be conserved among carbamyl phosphate synthetases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号