首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
N-Arachidonoyl (AA) derivatives of amino acids (glycine, phenylalanine, proline, valine, gamma-amino butyric acid (GABA), dihydroxyphenylalanine, tyrosine, tryptophan, and alanine) and peptides (Semax, MEHFPGP, and PGP) were synthesized in order to study the biological properties of acylamino acids. The mass spectra of all the compounds at atmospheric pressure electrospray ionization display the most intense peaks of protonated molecular ions; the detection limits for these compounds are 10 fmol per sample. AA-Gly showed the highest inhibitory activity toward fatty acid amide hydrolase from rat brain (IC50 6.5 microM) among all the acylamino acids studied. AA-Phe, AA-Tyr, and AA-GABA exhibited a weak but detectable inhibitory effect (IC50 55, 60, and 50 microM, respectively). The acylated amino acids themselves, except for AA-Gly, were stable to the hydrolysis by this enzyme. All the arachidonoylamino acids inhibited cabbage phospholipase D to various degrees; AA-GABA and AA-Phe proved to be the most active (IC50 20 and 27 microM, respectively). Attempts to detect the biosynthesis of AA-Tyr in homogenates of rat liver and nerve tissue showed no formation in vitro of either this acylamino acid or AA-dopamine and AA-Phe, the products of its metabolism. The highest contents of these metabolites were detected in liver homogenate and in the brain homogenate, respectively. Acylamino acids exert no cytotoxic effect toward the glioma C6 cells. It was shown that N-acylation of Semax with arachidonic acid results in enhancement of its hydrolytic stability and increases its affinity for the sites of specific binding in rat cerebellum membranes. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2006, vol. 32, no. 3; see also http://www.maik.ru.  相似文献   

2.
3.
The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in glioblastoma (WHO grade IV) tissue and meningioma (WHO grade I) tissue and compared with human non-tumour brain tissue. Furthermore, the metabolic turnover of N-acylethanolamines was compared by measurements of the enzymatic activity of N-acyltransferase, N-acylphosphatidylethanolamine-hydrolysing phospholipase D and fatty acid amide hydrolase in the same three types of tissue. Glioblastomas were characterized by enhanced levels of N-acylethanolamines (eightfold, 128 +/- 59 pmol/micromol lipid phosphorus) including anandamide (17-fold, 4.6 +/- 3.1 pmol/micromol lipid phosphorus) and several species of N-acylphosphatidylethanolamines (three to eightfold). This was accompanied by a more than 60% reduction in the enzyme activities of N-acylphosphatidylethanolamine-hydrolysing phospholipase D and fatty acid amide hydrolase. By contrast, meningiomas were characterized by a massively enhanced level of 2-monoacyl glycerols (20-fold, 2293 +/- 361 pmol/micromol lipid phosphorus) including 2-arachidonoyl glycerol (20-fold, 1524 +/- 361 pmol/micromol lipid phosphorus). This was accompanied by an enhanced in vitro conversion of phosphatidylcholine to monoacyl glycerol (fivefold). The enhanced level of the 2-arachidonoyl glycerol, anandamide and other N-acylethanolamines detected in the two types of tumour tissue may possibly act as endogenous anti-tumour mediators by stimulation of both cannabinoid and non-cannabinoid receptor-mediated mechanisms.  相似文献   

4.
Isoprostanes (iPs) are prostaglandin-like molecules derived from autoxidation of polyunsaturated fatty acids (PUFAs). Urinary iP levels have been used as indices of in vivo lipid peroxidation. Thus far, it has only been possible to measure iPs derived from arachidonic acid in urine, because levels of iPs/neuroprostanes (nPs) derived from omega 3-PUFAs have been found to be below detection limits of available assays. Because of the interest in omega3-PUFA dietary supplementation, we developed specific methods to measure nPF4 alpha-VI and iPF3 alpha-VI [derived from 4,7,10,13,16,19-docosahexaenoic acid (DHA) and 5,8,11,14,17-eicosapentaenoic acid (EPA)] using a combination of chemical synthesis, gas chromatography/mass spectrometry (GC/MS), and liquid chromatography tandem mass spectrometry (LC/MS/MS). Although nPF4 alpha-VI was below the detection limit of the assay, we conclusively identified iPF3 alpha-VI in human urine by GC/MS and LC/MS/MS. The mean levels in 26 subjects were approximately 300 pg/mg creatinine. Our failure to detect nPF4 alpha-VI may have been due to its rapid metabolism by beta-oxidation to iPF3 alpha-VI, which we showed to occur in rat liver homogenates. In contrast, iPF3 alpha-VI is highly resistant to beta-oxidation in vitro. Thus iPF3 alpha-VI can be formed by two mechanisms: i) direct autoxidation of EPA, and ii) beta-oxidation of nPF4 alpha-VI, formed by autoxidation of DHA. This iP may therefore serve as an excellent marker for the combined in vivo peroxidation of EPA and DHA.  相似文献   

5.
4-thiatetradecanoic acid exhibited weak antifungal activities against Candida albicans (ATCC 60193), Cryptococcus neoformans (ATCC 66031), and Aspergillus niger (ATCC 16404) (MIC=4.8-12.7 mM). It has been demonstrated that alpha-methoxylation efficiently blocks beta-oxidation and significantly improve the antifungal activities of fatty acids. We examined whether antifungal activity of 4-thiatetradecanoic acid can be improved by alpha-substitution. The unprecedented (+/-)-2-hydroxy-4-thiatetradecanoic acid was synthesized in four steps (20% overall yield), while the (+/-)-2-methoxy-4-thiatetradecanoic acid was synthesized in five steps (14% overall yield) starting from 1-decanethiol. The key step in the synthesis was the hydrolysis of a trimethylsilyloxynitrile. In general, the novel (+/-)-2-methoxy-4-thiatetradecanoic acid displayed significantly higher antifungal activities against C. albicans (ATCC 60193), C. neoformans (ATCC 66031), and A. niger (ATCC 16404) (MIC=0.8-1.2 mM), when compared with 4-thiatetradecanoic acid. In the case of C. neoformans the (+/-)-2-hydroxy-4-thiatetradecanoic acid was more fungitoxic (MIC=0.17 mM) than the alpha-methoxylated analog, but not as effective against A. niger (MIC=5.5 mM). The enhanced fungitoxicity of the (+/-)-2-methoxy-4-thiatetradecanoic acid, as compared to decylthiopropionic acid, might be the result of a longer half-life in the cells due to a blocked beta-oxidation pathway which results in more time to exert its toxic effects. Thus, these novel fatty acids may have applications as probes to study fatty acid metabolic routes in human cells.  相似文献   

6.
The N -acylethanolamines (NAEs) and 2-arachidonoylglycerol (2-AG) are bioactive lipids that can modulate inflammatory responses and protect neurons against glutamatergic excitotoxicity. We have used a model of focal cerebral ischemia in young adult mice to investigate the relationship between focal cerebral ischemia and endogenous NAEs. Over the first 24 h after induction of permanent middle cerebral artery occlusion, we observed a time-dependent increase in all the investigated NAEs, except for anandamide. Moreover, we found an accumulation of 2-AG at 4 h that returned to basal level 12 h after induction of ischemia. Accumulation of NAEs did not depend on regulation of N -acylphosphatidylethanolamine-hydrolyzing phospholipase D or fatty acid amide hydrolase. Treatment with the fatty acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 1 mg/kg; i.p.) 1.5 h before arterial occlusion decreased the infarct volume in our model system. Our results suggest that NAEs and 2-AG may be involved in regulation of neuroprotection during focal cerebral ischemia in mice.  相似文献   

7.
Amino acids have been investigated in seeds and fresh parts of members of the Fagaceae. Seeds from the genus Fagus contain willardiine, 5-hydroxy-6-methylpipecolic acids, N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid and γ-glutamyl peptides, mainly γ-glutamylphenylalanine. These compounds are nearly or totally absent from leaves of F. silvatica and from seedlings and immature seeds of F. silvatica var. purpurea; instead, the seedlings contain large amounts of γ-l-glutamyl-l-isoleucine and γ-l-glutamyl-l-leucine. γ-l-Glutamyl-l-tryptophan and γ-l-glutamyl-γ-l-glutamyl-l-phenylalanine, not previously known from nature, have been isolated from seeds of F. silvatica var. purpurea. The structures have been confirmed by syntheses. 4-Hydroxypipecolic acid (with trans-configuration) has been identified in seeds of F. japonica Maxim. and F. sieboldii Endl. None of the above compounds was found in Quercus or Castanea species whereas argininosuccinic acid was identified in Castanea sativa.  相似文献   

8.
Little is known about the uptake or metabolism of essential fatty acids (EFAs) in various mammalian organs. Thus, the distribution of deuterated alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) and their metabolites was studied using a stable isotope tracer technique. Rats were orally administered a single dose of a mixture (20 mg each) of ethyl D5-18:3n-3 and D5-18:2n-6, and 25 tissues per animal were analyzed for D5-labeled PUFAs at 4, 8, 24, 96, 168, 240, 360, and 600 h after dosing. Plasma, stomach, and spleen contained the highest concentrations of labeled precursors at the earliest time points, whereas other internal organs and red blood cells reached their maximal concentrations at 8 h. The time-course data were consistent with liver metabolism of EFAs, but local metabolism in other tissues could not be ruled out. Brain, spinal cord, heart, testis, and eye accumulated docosahexaenoic acid with time, whereas skin accumulated mainly 20:4n-6. On average, approximately 16-18% of the D5-18:3n-3 and D5-18:2n-6 initial dosage was eventually accumulated in tissues, principally in adipose, skin, and muscle. Approximately 6.0% of D5-18:3n-3 and 2.6% of D5-18:2n-6 were elongated/desaturated and stored, mainly in muscle, adipose, and the carcass. The remaining 78% of both precursors was apparently catabolized or excreted.  相似文献   

9.
In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic - acid AP4 dl-2-amino-4-phosphonobutyric acid - BPB bromphenacyl bromide - BSA bovine serum albumin - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - DFMO -difluoromethylornithine - DIDS diisothiocyanotostilbene-2,2-disulfonic acid - EGTA ethyleneglycol-bis-N - N, N N-tetraacetic acid - GABA -aminobutyric acid - GDEE glutamate diethyl ether - -GG -glutamylglycine - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - NDGA nordihydroguaiaretic acid - NE norepinephrine - NMDA N-methyl-d-aspartate  相似文献   

10.
Summary Arachidonic acid inhibits the cell shrinkage observed in Ehrlich ascites tumor cells during regulatory volume decrease (RVD) or after addition of the Ca ionophore A23187 plus Ca. In Na-containing media, arachidonic acid increases cellular Na uptake under isotonic as well as under hypotonic conditions. Arachidonic acid also inhibits KCl and water loss following swelling in Na-free, hypotonic media even when a high K conductance has been ensured by addition of gramicidin. In isotonic, Na-free medium arachidonic acid inhibits A23187 + Ca-induced cell shrinkage in the absence but not in the presence of gramicidin. It is proposed that inhibition of RVD in hypotonic media by arachidonic acid is caused by reduction in the volume-induced Cl and K permeabilities as well as by an increase in Na permeability and that reduction in A23187 + Ca-induced cell shrinkage is due to a reduction in K permeability and an increase in Na permeability. The A23187 + Ca-activated Cl permeability in unaffected by arachidonic acid. PGE2 inhibits RVD in Na-containing, hypotonic media but not in Na-free, hypotonic media, indicating a PGE2-induced Na uptake. PGE2 has no effect on the volume-activated K and Cl permeabilities. LTB4, LTC4 and LTE4 inhibit RVD insignificantly in hypotonically swollen cells. LTD4, more-over, induces cell shrinkage in steady-state cells and accelerates the RVD following hypotonic exposure. The effect of LTD4 even reflects a stimulating effect on K and Cl transport pathways. Thus none of the leukotrienes show the inhibitory effect found for arachidonic acid on the K and Cl permeabilities. The RVD response in hypotonic, Na-free media is, on the other hand, also inhibited by addition of the unsaturated oleic, linoleic, linolenic and palmitoleic acid, even in the presence of the cationophor gramicidin. The saturated arachidic and stearic acid had no effect on RVD. It is, therefore, suggested that a minor part of the inhibitory effect of arachidonic acid on RVD in Na-containing media is via an increased synthesis of prostaglandins and that the major part of the arachidonic acid effect on RVD in Na-free media, and most probably also in Na-containing media, is due to the inhibition of the volume-induced K and Cl transport pathways, caused by a nonspecific detergent effect of an unsaturated fatty acid.  相似文献   

11.
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters.  相似文献   

12.
13.
Lipoxygenase- mediated cleavage of fatty acids in plant mitochondria   总被引:1,自引:0,他引:1  
Incubation of cauliflower bud mitochondria in the presence of 5 mM CaCl2 results in a rapid hydrolysis of the main membrane phospholipsds. Under the action of phospholipase D, phosphatidic acid is produced and forms, within the membranes, a very labile complex with Ca2+ and HPO42-ions present in the incubation medium. With time, one observes a first step characterized by the formation of phosphatidic acid, followed by a second step linked to the breakdown of this phospholipid. The enzyme responsible for the disappearance of phosphalidic acid has been identified as lipoxygenase. In the presence of molecular oxygen, this enzyme acts on the polyun-saturated fatty acids of phosphatidic add (mainly C18:2 and C18:3) yielding small water-soluble molecules, one of them being identified as malondialdehyde (1, 3-propanedial). Experiments involving inhibitory conditions of the breakdown of phosphatidic acid indicate that lipoxygenase acts directly on membrane-bound phosphatidic acid without previous, involvement of a lipolytic acyl hydrolase activity. In addition, the lipoxygenase activity is fully sensitive to hydroxamate derivatives. It is proposed that the lipoxygenase activity may account for a part of the mitochondrial alternative electron pathway that is insensitive to cyanide.  相似文献   

14.
We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.  相似文献   

15.
The objectives of this study were to optimize a sensitive high-performance liquid chromatography (HPLC) method for fatty acid (FA) analysis for the quantification of polyunsaturated FAs (PUFAs) in cell lipid extracts and to analyze the lipid and FA patterns of three cell lines used in blood-brain barrier (BBB) models: RBE4, ECV304, and C6. Thin-layer chromatographic analysis revealed differences in the phosphatidylcholine-phosphatidylethanolamine (PC:PE) ratios and the triglyceride (TG) content. The PC:PE ratio was <1 for RBE4 cells but >1 for ECV304 and C6 cells. ECV304 cells displayed up to 9% TG depending on culture time, whereas the other cell lines contained about 1% TG. The percentages of docosahexaenoic acid were 9.4 +/- 1.7% of the unsaturated FAs in RBE4 cells (n = 5; 4 d in culture; 9.9% after 10 d), 8.1 +/- 2.0% in ECV304 cells (n = 11; 10 to 14 d), and 6.7 +/- 0.6% in C6 cells (n = 6; 10 to 14 d) and were close to the published values for rat brain microvascular endothelium. The percentage of arachidonic acid (C20:4) was about half that in vivo. ECV304 cells contained the highest fraction of C20:4, 17.8 +/- 2.2%; RBE4 cells contained 11.6 +/- 2.4%; and C6 cells 15.8 +/- 1.9%. It is concluded that a sensitive HPLC method for FAs is now optimized for the analysis of long-chain PUFAs. The results provide a useful framework for studies on the effects of lipid modulation and give reference information for the development of further BBB models.  相似文献   

16.
Epidermal fatty acid-binding protein (E-FABP), a member of the family of FABPs, exhibits a robust expression in neurons during axonal growth in development and in nerve regeneration following nerve injury. This study examines the impact of E-FABP expression in normal neurite extension in differentiating pheochromocytoma cell (PC12) cultures supplemented with selected long chain free fatty acids (LCFFA). We found that E-FABP binds to a broad range of saturated and unsaturated LCFFAs, including those with potential interest for neuronal differentiation and axonal growth such as C22:6n-3 docosahexaenoic acid (DHA), C20:5n-3 eicosapentaenoic acid (EPA), and C20:4n-6 arachidonic acid (ARA). PC12 cells exposed to nerve growth factor (NGFDPC12) exhibit high E-FABP expression that is blocked by mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Nerve growth factor-differentiated pheochromocytoma cells (NGFDPC12) antisense clones (NGFDPC12-AS) which exhibit low E-FABP expression have fewer/shorter neurites than cells transfected with vector only or NGFDPC12 sense cells (NGFDPC12-S). Replenishing NGFDPC12-AS cells with biotinylated recombinant E-FABP (biotin-E-FABP) protein restores normal neurite outgrowth. Cellular localization of biotin-E-FABP in NGFDPC12 was detected mostly in the cytoplasm and in the nuclear region. Treatment of NGFDPC12 with DHA, EPA, or ARA further enhances neurite length but it does not trigger further induction of TrkA or MEK phosphorylation or E-FABP mRNA observed in differentiating PC12 cells without LCFFA supplementation. Significantly, DHA and EPA neurite stimulating effects are higher in NGFDPC12-S than in NGFDPC12-AS cells. These findings are consistent with the scenario that neurite extension of differentiating PC12 cells, including further stimulation by DHA and EPA, requires sufficient cellular levels of E-FABP.  相似文献   

17.
In response to various environmental stress conditions, plants rapidly form the intracellular lipid second messenger phosphatidic acid (PA). It can be generated by two independent signalling pathways via phospholipase D (PLD) and via phospholipase C (PLC) in combination with diacylglycerol kinase (DGK). In the green alga Chlamydomonas, the phospholipid substrates for these pathways are characterized by specific fatty acid compositions. This allowed us to establish: (i) PLD's in vivo substrate preference; and (ii) PLD's contribution to PA formation during stress signalling. Accordingly, G-protein activation (1 micro m mastoparan), hyperosmotic stress (150 mm NaCl) and membrane depolarization (50 mm KCl) were used to stimulate PLD, as monitored by the accumulation in 5 min of its unique transphosphatidylation product phosphatidylbutanol (PBut). In each case, PBut's fatty acid composition specifically matched that of phosphatidylethanolamine (PE), identifying this lipid as PLD's favoured substrate. This conclusion was substantiated by analysing the molecular species by electrospray ionization-mass spectrometry (ESI-MS/MS), which revealed that PE and NaCl-induced PBut share a unique (18 : 1)2-structure. The fatty acid composition of PA was much more complex, reflecting the different contributions from the PLC/DGK and PLD pathways. During KCl-induced stress, the PA rise was largely accounted for by PLD activity. In contrast, PLD's contribution to hyperosmotic stress-induced PA was less, being approximately 63% of the total increase. This was because the PLC/DGK pathway was activated as well, resulting in phosphoinositide-specific fatty acids and molecular species in PA.  相似文献   

18.
Summary A convenient method for the synthesis of symmetric and asymmetric diamides of amino acids including DOPA and citric acid from 2-tert-butyl-1,3-di(N-hydroxysuccinimidyl)citrate and 1-tert-butyl-2,3-di(N-hydroxysuccinimidyl)citrate is described.Abbreviations AcOtBu tert-butyl acetate - i-Bu iso-butyl - tBu tert-butyl - Bzl benzyl - p-OH-Bzl p-hydroxybenzyl - m,p-(OH)2-Bzl m,p-dihydroxybenzyl - DCCI dicyclohexylcarbodiimide - Et ethyl - Me methyl - Su succinimidyl - SuOH N-hydroxysuccinimide - Ph phenyl  相似文献   

19.
Hydroperoxides of polyunsaturated fatty acids can be transformed to epoxyalcohols and keto fatty acids by metal enzymes, hematin, and various catalysts. In the current study, we used hematin to transform 9-hydroperoxy-10E,12Z-octadecadienoic acid and 13-hydroperoxy-9Z,11E-octadecadienoic acid to epoxyalcohols (with trans epoxide configuration) and to keto fatty acids. The products were separated by normal phase high-performance liquid chromatography (NP-HPLC) and analyzed using postcolumn addition of isopropanol/water and online negative ion electrospray ionization mass spectrometry (MS). The tandem MS (MS/MS) spectra were studied using analogs prepared from [9,10,12,13-2H4]linoleic acid (18:2n−6) and from α-linolenic acid (18:3n−3). We also studied the MS/MS spectra of epoxyalcohols formed from 11-hydroperoxy- and 8-hydroperoxy-9Z,12Z-octadecadienoic acids. Results were confirmed by MS/MS analysis of a series of authentic standards. MS/MS ions of 9-keto-10E,12Z-octadecadienoic acid and 13-keto-9Z,11E-octadecadienoic acid could be explained by keto-enol tautomerism. MS/MS spectra of regioisomeric allylic epoxyalcohols differed in relative intensities of characteristic ions. The MS/MS spectra of the epoxyalcohols with 1-hydroxy-2,3-epoxy-4Z-pentene or 3-hydroxy-1,2-epoxy-4Z-pentene elements were virtually identical and showed two characteristic ions that differed by 30 in m/z values (CH(OH)). The results suggested that epoxide migration (Payne rearrangement) occurred during collision-induced dissociation. We conclude that regioisomeric allylic epoxyalcohols can be identified by their MS/MS spectra, whereas regioisomeric epoxyalcohols can be identified by MS/MS in combination with their retention times on NP-HPLC.  相似文献   

20.
Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood-brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo-like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号