首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrocytes infected with Plasmodium falciparum bind specifically to cultured endothelial cells and to a line of amelanotic melanoma cells. We have fixed endothelial cells and amelanotic melanoma cells in various ways and determined whether the fixed cells were still able to bind infected erythrocytes. Only cells fixed with 1.0-2.5% formalin in phosphate-buffered saline continued to bind infected erythrocytes as well as unfixed cells. The mechanism of binding to fixed and unfixed cells appeared to be identical for the following reasons. First, erythrocytes infected by parasite strains that bound to unfixed cells also bound to fixed cells while those that did not bind to unfixed cells did not bind to fixed cells. Second, immune serum that inhibited binding to unfixed cells also inhibited binding to fixed cells. Third, electron microscopy showed that knobs were the points of attachment between infected erythrocytes and both fixed and unfixed melanoma cells. Fixed cells gave reproducible results over at least 2 months. Thus, we have developed a simplified, reproducible assay for measuring binding of P. falciparum-infected erythrocytes to target cells.  相似文献   

2.
An in vitro correlate of the binding in vivo of Plasmodium falciparum-infected erythrocytes to capillary and venular endothelium, using cultured human endothelial cells and amelanotic melanoma cells, was previously developed. The effects of different times in continuous culture on binding of erythrocytes infected with nine different isolates of P. falciparum is now reported. Four isolates, which bound at the time they were first tested, rapidly lost the ability to bind after 26-43 days in culture. One of these, the Cameroun isolate, tested 12 h after the blood was obtained from the patient, had the highest rate of binding of all isolates (680 infected erythrocytes per 100 melanoma cells). After 37 days in culture, only 18 infected erythrocytes per 100 melanoma cells bound. Three isolates first tested after 30-62 days in culture bound poorly. In contrast, two others, the Vietnam (VI) and Brazil (It), continued to bind during the period of study. The Brazil (It) isolate studied after 43 days in culture bound 505 infected erythrocytes per 100 melanoma cells; its clone ItG2G1 continued to bind equally well after 400 days in culture. The ultrastructural morphology of knobs on the binding and nonbinding infected erythrocytes were indistinguishable. Since evidence from other studies indicates that knobs are necessary for binding to endothelium, it is proposed that some parasites in continuous culture may not express the molecules responsible for binding, although the morphologic knobs are still present.  相似文献   

3.
4.
A monoclonal antibody generated against synthetic peptides patterned on amino acids 542–555 of human band 3, designated 1F4, specifically immunostainedPlasmodium falciparum-infected erythrocytes and inhibited the cytoadherence ofP. falciparum-infected erythrocytes to C32 amelanotic melanoma cells. 1F4 did not recognize intact band 3 protein on immunoblots, however it was reactive towards proteolytic fragments of band 3.The binding region of another murine monoclonal antibody previously reported to recognize the membrane spanning domain of human band 3, designated B6, was found to also recognize residues 542–555, however its properties differed from 1F4. Mab B6 recognized both infected and uninfected red cells, and reacted only with intact band 3 on immunoblots. Mab B6 was without effect on cytoadherence.These results demonstrate that monoclonal antibodies reactive against a common peptide sequence may bind to different conformations of the peptide sequence and suggest that the adherent competency ofP. falciparum-infected erythrocytes may result from a change in the surface topography of human band 3 protein.Abbreviations ELISA Enzyme-Linked Immunosorbent Assay - KLH Keyhole Limpet Hemocyanin - PBS Phosphate Buffered Saline - Mab Monoclonal Antibody - PMSF Phenylmethyl sulfonyl fluoride - i.p. intraperitoneum - TBS Tris Buffered Saline - H2DIDS dihydro 4,4-diisothocyanostilbene-2,2-disulfonic acid - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid  相似文献   

5.
Infections with the human malaria Plasmodium falciparum are characterized by the retention of parasitized erythrocytes in tissue capillaries and venules. Erythrocytes containing trophozoites and schizonts attach to the endothelial cells that line these vessels by means of structurally identifiable excrescences present on the surface of the infected cell. Such excrescences, commonly called knobs, are visible by means of scanning or transmission electron microscopy. The biochemical mechanisms responsible for erythrocyte adherence to the endothelial cell are still undefined. In an attempt to identify the cytoadhesive molecule on the surface of the infected cell, we have prepared monoclonal antibodies to knob-bearing erythrocytes infected with the FCR-3 strain of P. falciparum. One of these monoclonal antibodies, designed 4A3, is an IgM that reacts (by means of immunofluorescence) with the surface of unfixed erythrocytes bearing mature parasites of the knobby line; it does not react with knobless lines or uninfected erythrocytes. By immunoelectron microscopy the monoclonal antibody 4A3 was localized to the knob region. In an in vitro cytoadherence assay, the monoclonal antibody partially blocked the binding of knob-bearing cells (FCR-3 strain) to formalin-fixed amelanotic melanoma cells. The monoclonal antibody was used to immunoprecipitate a protein from extracts of knobby erythrocytes that had been previously surface iodinated. By a two-dimensional peptide mapping technique, the antigen recognized by the monoclonal antibody was found to be structurally related to band 3 protein, the human erythrocyte anion transporter.  相似文献   

6.
A knobless (K-) line of the FCR-3 isolate of Plasmodium falciparum was obtained by gelatin flotation. Immunofluorescent staining and immunoblots indicated that both the K-line and the K+ (knobby) line from which it was derived contained similar forms of potentially adhesive modified band 3 protein. When the K+ and K-lines were assayed for their cytoadherent and rosetting abilities the K+ line showed a high level of CD36 dependent cytoadherence, whereas the K-line demonstrated a marked pH dependent increase in rosetting. Rosetting was inhibited by the addition of peptides based on band 3 motifs, suggesting that cytoadherence and rosetting involve the same adhesin but that the presence of knobs affects whether the adherent preference of the infected erythrocyte is uninfected red cells or endothelial/C32 amelanotic melanoma cells.  相似文献   

7.
Summary P. falciparum, an intraerythrocytic parasite, obtains nourishment primarily through phagocytosis of the host cytosol but also through the incorporation of extracellular small molecules which enter through the parasitized red cell's membrane via pores. Normal mature erythrocytes are incapable of endocytosis. Several lines of evidence suggest that extracellular large molecules may be taken up when the mature red cell is parasitized byP. falciparum, but direct evidence has been lacking. We now report the use of ferritin, an electron dense protein, to demonstrate endocytosis inP. falciparum infected red cells. Parasitized red cells incubated with ferritin internalize that macromolecule as demonstrated by electron microscopy. While normal red cells incubated with ferritin took up none of the tracer molecule, parasitized red cells internalized substantial amounts. In addition both ferritin and apoferritin inhibited the growth ofP. falciparum in a dose dependent fashion, again indicating endocytosis of a macromolecule. These data indicate thatP. falciparum can somehow stimulate the mature erythrocyte to engage in endocytosis. We also note that both infected and non-infected red cells in a culture in whichP. falciparum is growing become abnormally sticky for ferritin. Moreover, parasitized red cells bind I125-transferrin while non-parasitized erythrocytes do not. These observations suggest that a soluble parasite product alters the red cell membrane in a non-global manner, causing selective effects in relation to different proteins.  相似文献   

8.
Infection of human erythrocytes with the malaria parasite, Plasmodium falciparum, results in the exposure of amino acid residues 542–555 of the anion-exchange protein, band 3, in a conformation that enables the cell to adhere to C32 amelanotic melanoma cells. Attempts to isolate this adhesive form from infected cells by irnmunoaffinity were unsuccessful, and so other approaches were utilized. Chinese hamster ovary (CHO) cells tTansfected with cDNA encoding the first 578 amino acid residues of human band 3 protein transiently expressed the protein efficiently. A murine monoclonal antibody (MAb) that specifically recognizes the adhesin exposed on the surface of erythrocytes bearing mature stages of P. falciparum immunostained some transfected cells, confirming that the first 578 amino residues are sufficient for the adhesive conformation. As a more efficient alternative to transgenic expression of the adhesin, microspheres with covalently bound peptides fashioned on band 3 sequences previously found to be adherent (residues 546–553 and 820–829 and called pfalhesin) were produced. The pfalhesin-coated microspheres specifically bound to C32 amelanotic melanoma cells, whereas microspheres coupled with a scrambled version of residues 546–553 had little binding capacity for melanoma cells.

These results demonstrate that the previously identified band 3-related peptides that inhibit cytoadherence interact directly with target cells and suggest that microspheres with covalently coupled peptides might constitute novel ‘artificial’ P. falciparum-infected erythrocytes for use in in vitro and in vivo studies.  相似文献   

9.
The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.  相似文献   

10.
《Biophysical journal》2021,120(16):3315-3328
The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.  相似文献   

11.
The cytoadherence of Plasmodium falciparum-infected erythrocytes (FCR-3 line) to human brain capillary endothelial cells (HBEC), C32 amelanotic melanoma cells, and human umbilical vein endothelial cells (HUVEC) was studied. The adhesion of infected red cells was HBEC > amelanotic melanoma > HUVEC. The presence or absence of the adhesive ligands ICAM-1 (CD54 or intercellular adhesion molecule 1), ICAM-2, and CD36 (= glycoprotein IV) was determined for each of these cells by indirect immunofluorescence using the monoclonal antibodies RR1/1, 6D5, and OKM 5/OKM 8, respectively. It appeared that a major ligand for the FCR-3 line of P. falciparum with amelanotic melanoma cells and HBECs was CD36. Binding to HUVECs was very low, presumably due to their lack of expression of CD36. HBECs, because of their ease of in vitro propagation, long-term maintenance of cytoadherent properties, and their high degree of adhesiveness, will be useful for in vitro studies of adherence.  相似文献   

12.
2,3-Diphosphoglycerate (2,3-DPG), an intracellular metabolite of glycolytic pathway is known to affect the oxygen binding capacity of haemoglobin and mechanical properties of the red blood cells. 2,3-DPG levels have been reported to be elevated during anaemic conditions including visceral leishmaniasis. 2,3-DPG activity in P. falciparum infected red blood cells, particularly in cells infected with different stages of the parasite and its relationship with structural integrity of the cells is not known. Chloroquine sensitive and resistant strains of P. falciparum were cultured in vitro and synchronized cultures of ring, trophozoite and schizont stage rich cells along with the uninfected control erythrocytes were assayed for 2,3-DPG activity and osmotic fragility. It was observed that in both the strains, in infected erythrocytes the 2,3-DPG activity gradually decreased and osmotic fragility gradually increased as the parasite matured from ring to schizont stage. The decrease in 2,3-DPG may probably be due to increased pyruvate kinase activity of parasite origin, which has been shown in erythrocytes infected with several species of Plasmodium. The absence of compensatory increase in 2,3-DPG in P. falciparum infected erythrocytes may aggravate hypoxia due to anaemia in malaria and probably may contribute to hypoxia in cerebral malaria. As 2,3-DPG was not found to be increased in erythrocytes parasitized with P. falciparum, the increased osmotic fragility observed in these cells is not due to increased 2,3-DPG as has been suggested in visceral leishmaniasis.  相似文献   

13.
Infection of human erythrocytes with the malaria parasite, Plasmodium falciparum, results in the exposure of amino acid residues 542-555 of the anion-exchange protein, band 3, in a conformation that enables the cell to adhere to C32 amelanotic melanoma cells. Attempts to isolate this adhesive form from infected cells by irnmunoaffinity were unsuccessful, and so other approaches were utilized. Chinese hamster ovary (CHO) cells tTansfected with cDNA encoding the first 578 amino acid residues of human band 3 protein transiently expressed the protein efficiently. A murine monoclonal antibody (MAb) that specifically recognizes the adhesin exposed on the surface of erythrocytes bearing mature stages of P. falciparum immunostained some transfected cells, confirming that the first 578 amino residues are sufficient for the adhesive conformation. As a more efficient alternative to transgenic expression of the adhesin, microspheres with covalently bound peptides fashioned on band 3 sequences previously found to be adherent (residues 546-553 and 820-829 and called pfalhesin) were produced. The pfalhesin-coated microspheres specifically bound to C32 amelanotic melanoma cells, whereas microspheres coupled with a scrambled version of residues 546-553 had little binding capacity for melanoma cells.

These results demonstrate that the previously identified band 3-related peptides that inhibit cytoadherence interact directly with target cells and suggest that microspheres with covalently coupled peptides might constitute novel 'artificial' P. falciparum-infected erythrocytes for use in in vitro and in vivo studies.  相似文献   

14.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

15.
Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. We show here that monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocytes, and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an 125I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes.  相似文献   

16.
Plasmodium falciparum‐infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand P. falciparum erythrocyte membrane protein 1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti‐coagulant and pro‐endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined the adhesion of DC8‐ and DC13‐expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 cysteine‐rich interdomain region (CIDR)α1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC–EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin‐induced endothelial barrier dysfunction in lung endothelial cells, whereas IT4var07 CIDRα1.4 inhibited the protective effect of APC on thrombin‐induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1‐expressing parasites may modulate malaria pathogenesis through EPCR adhesion.  相似文献   

17.

Background

To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE) of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes.

Methodology/Principal Findings

Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively.

Conclusion/Significance

This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were transcribed in infected but not sequestered erythrocytes.  相似文献   

18.
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.  相似文献   

19.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30–40 nm in height and 90–100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

20.
Previously it was shown that Plasmodium falciparum-infected erythrocytes bound to thrombospondin by the interaction of the peptidic sequence, HPLQKTY, of the band 3 protein of infected erythrocytes, and the RGD motif of thrombospondin. Here, we show that falciparum-parasitized erythrocytes bind to immobilized fibronectin by the RGD sequence of fibronectin. Involvement of the HPLQKTY region of band 3 in binding was demonstrated by inhibition of adhesion of parasitized erythrocytes to fibronectin by an HPLQKTY-containing peptide and the binding of the HPLQKTY peptide to the RGD sequence of immobilized fibronectin. Since fibronectin occurs on endothelial cells and platelets, this interaction may contribute to the binding of falciparum-infected erythrocytes to such host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号