首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rhodamine 123 (Rh123) has been used to probe the functional status of the mitochondrion present within the asexual, intraerythrocytic stages of the malarial parasite Plasmodium falciparum. This cationic fluorescent dye accumulates specifically in negatively charged cellular compartments, such as mitochondria. Using epifluorescence microscopy the development of what appears to be a single mitochondrion has been followed through the intraerythrocytic cycle. Mitochondrial development progresses from a fine thread-like organelle that becomes longer and eventually branched. Each daughter merozoite receives a branch or piece of the parent organelle. Cytoplasmic Rh123 accumulation was also observed, indicating that there exists a transmembrane potential across the outer plasma and parasitophorous vacuolar membranes of the parasite. The effects of uncouplers (protonophores), ionophores, and inhibitors were examined by monitoring Rh123 accumulation and retention. Our results demonstrate that the mitochondrion of P. falciparum actively maintains a high transmembrane potential, the function of which is as yet undefined.  相似文献   

2.
Sato S  Clough B  Coates L  Wilson RJ 《Protist》2004,155(1):117-125
All eight enzymes required for de novo heme biosynthesis have been predicted from the nuclear genome of the human malaria parasite Plasmodium falciparum. We have studied the subcellular localization of three of these using a GFP reporter in live transfected parasites. The first enzyme in the pathway d-aminolevulinic acid synthase (ALAS) is targeted to the mitochondrion, but the next two enzymes porphobilinogen synthase (PBGS) and hydroxymethylbilane synthase (HMBS) are targeted to the plastid. An enzymatically active recombinant version of PBGS from P. falciparum was over-expressed and its activity found to be stimulated by Mg2+(and enhanced by Mn2+) but not by Zn2+. A hypothetical scheme for the exchange of intermediates in heme biosynthesis between the mitochondrion and plastid organelle, as well as organelle attachment is discussed.  相似文献   

3.
ABSTRACT. Rhodamine 123, a membrane potential-specific dye, has been evaluated as a probe to monitor the function of the mitochondrion in long slender bloodstream and procyclic trypomastigotes of several Trypanosoma brucei spp. By epifluorescence microscopy, mitochondrial development has been followed in long slender bloodstream and procyclic organisms stained with rhodamine 123. to photograph stained long slender bloodstream forms, it was necessary to develop a method to completely immobilize viable organisms. In both parasite forms, as the cell cycle progressed, the mitochondrion developed from a thread-like structure to a highly branched organelle. A dramatic reorganization occurred preceding cytokinesis to produce two progeny thread-like structures which were partitioned into newly formed daughter cells. the organelle within the long slender trypomastigote was found to stain optimally at 0.3 μ/ml of rhodamine 123, while the procyclic form required 3.0 μ/ml. the results suggest that the plasma membrane potential is higher in the long slender parasite than in the procyclic form. the effects of inhibitors that disrupt mitochondrial function were examined in long slender and procyclic parasites, and some of these agents were shown to affect rhodamine 123 accumulation and retention. In long slender trypomastigotes the trypanosome alternative oxidase does not appear to be coupled to proton pumping, whereas in procyclic organisms the effects of inhibitors indicate that this oxidase may be coupled to a pathway that is branched preceding an antimycin A1-sensitive site.  相似文献   

4.
Intermediate-size noncoding RNAs (is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Plasmodium falciparum, which is the most virulent malaria parasite infecting human being. By using Illumina/Solexa paired-end sequencing of an is-ncRNA-specific library, we performed a systematic identification of novel is-ncRNAs in intraerythrocytic P. falciparum, strain 3D7. A total of 1,198 novel is-ncRNA candidates, including antisense, intergenic, and intronic is-ncRNAs, were identified. Bioinformatics analyses showed that the intergenic is-ncRNAs were the least conserved among different Plasmodium species, and antisense is-ncRNAs were more conserved than their sense counterparts. Twenty-two novel snoRNAs were identified, and eight potential novel classes of P. falciparum is-ncRNAs were revealed by clustering analysis. The expression of randomly selected novel is-ncRNAs was confirmed by RT-PCR and northern blotting assays. An obvious different expressional profile of the novel is-ncRNA between the early and late intraerythrocytic developmental stages of the parasite was observed. The expression levels of the antisense RNAs correlated with those of their cis-encoded sense RNA counterparts, suggesting that these is-ncRNAs are involved in the regulation of gene expression of the parasite. In conclusion, we accomplished a deep profiling analysis of novel is-ncRNAs in P. falciparum, analysed the conservation and structural features of these novel is-ncRNAs, and revealed their differential expression patterns during the development of the parasite. These findings provide important information for further functional characterisation of novel is-ncRNAs during the development of P. falciparum.  相似文献   

5.
The human malaria parasite Plasmodium falciparum is absolutely dependent on the acquisition of host pantothenate for its development within human erythrocytes. Although the biochemical properties of this transport have been characterized, the molecular identity of the parasite-encoded pantothenate transporter remains unknown. Here we report the identification and functional characterization of the first protozoan pantothenate transporter, PfPAT, from P. falciparum. We show using cell biological, biochemical, and genetic analyses that this transporter is localized to the parasite plasma membrane and plays an essential role in parasite intraerythrocytic development. We have targeted PfPAT to the yeast plasma membrane and showed that the transporter complements the growth defect of the yeast fen2Δ pantothenate transporter-deficient mutant and mediates the entry of the fungicide drug, fenpropimorph. Our studies in P. falciparum revealed that fenpropimorph inhibits the intraerythrocytic development of both chloroquine- and pyrimethamine-resistant P. falciparum strains with potency equal or better than that of currently available pantothenate analogs. The essential function of PfPAT and its ability to deliver both pantothenate and fenpropimorph makes it an attractive target for the development and delivery of new classes of antimalarial drugs.  相似文献   

6.
Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through ubiquitin‐proteasome system (UPS) gene regulation. In plants, melatonin regulates root development, in a similar way to that described for indoleacetic acid, suggesting that melatonin and indoleacetic acid could co‐participate in some physiological processes due to structural similarities. In the present work, we evaluate whether the chemical structure similarity found in indoleacetic acid and melatonin can lead to similar effects in Arabidopsis thaliana lateral root formation and P. falciparum cell cycle modulation, as well as in the UPS of gene regulation, by qRT‐PCR. Our data show that P. falciparum is not able to respond to indoleacetic acid either in the modulation of the intraerythrocytic cycle or in the gene regulation mediated by the UPS as observed for melatonin. The similarities of these indole compounds are not sufficient to confer synergistic functions in P. falciparum cell cycle modulation, but could interplay in A. thaliana lateral root formation.  相似文献   

7.
Lipoic acid is an essential cofactor of multienzyme complexes that are integral to energy metabolism, amino acid degradation and folate metabolism. In recent years it has been shown that the malaria parasite Plasmodium falciparum possesses organelle-specific pathways that guarantee the lipoylation of their multienzyme complexes which occur in the mitochondrion (LA salvage) and in a plastid-like organelle, the apicoplast (LA biosynthesis). The unique distribution of the lipoylation machineries and the unique metabolic requirements of the parasites present a situation that is potentially exploitable for new ways to improve malaria control.  相似文献   

8.
Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca2+) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca2+ imaging showed that LZ treatment completely abolished Ca2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3–Ca2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.  相似文献   

9.
Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.  相似文献   

10.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

11.
Plasmodium falciparum is a protozoan parasite that is responsible for the most pathogenic form of human malaria. The particular virulence of this parasite derives from its ability to develop within the erythrocytes of its host and to subvert their function. The intraerythrocytic parasite devours haemoglobin, and remodels its host cell to cause adhesion to blood vessel walls. Ultrastructural studies of P. falciparum have played a major role in defining its cell architecture and in resolving cell biology controversies. Here we review some of the early studies and describe some recent developments in electron microscopy techniques that have revealed information about the organization of the parasite in the blood stage of development. We present images of P. falciparum at different stages of the life cycle and highlight some of the plasmodium-specific organelles, the haemoglobin digestive apparatus and the membrane structures that are elaborated in the host cell cytoplasm to traffic virulence proteins to the erythrocyte surface. We describe methods for whole cell ultrastructural imaging that can provide three-dimensional views of intraerythrocytic development.  相似文献   

12.
Apicomplexan protists such as Plasmodium and Toxoplasma contain a mitochondrion and a relic plastid (apicoplast) that are sites of protein translation. Although there is emerging interest in the partitioning and function of translation factors that participate in apicoplast and mitochondrial peptide synthesis, the composition of organellar ribosomes remains to be elucidated. We carried out an analysis of the complement of core ribosomal protein subunits that are encoded by either the parasite organellar or nuclear genomes, accompanied by a survey of ribosome assembly factors for the apicoplast and mitochondrion. A cross-species comparison with other apicomplexan, algal and diatom species revealed compositional differences in apicomplexan organelle ribosomes and identified considerable reduction and divergence with ribosomes of bacteria or characterized organelle ribosomes from other organisms. We assembled structural models of sections of Plasmodium falciparum organellar ribosomes and predicted interactions with translation inhibitory antibiotics. Differences in predicted drug–ribosome interactions with some of the modelled structures suggested specificity of inhibition between the apicoplast and mitochondrion. Our results indicate that Plasmodium and Toxoplasma organellar ribosomes have a unique composition, resulting from the loss of several large and small subunit proteins accompanied by significant sequence and size divergences in parasite orthologues of ribosomal proteins.  相似文献   

13.
A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61 kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58 kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite.  相似文献   

14.
The cationic permeant fluorescent dye rhodamine 123 (R123) was used to stain Plasmodium yoelii-infected mouse erythrocytes. Fluorescence microscopic observations demonstrated that the parasite, but not the matrix of the infected erythrocyte, accumulated the dye. Differences in fluorescence intensity could not be found at the various developmental stages of the parasite; however, quantitation of the cell-associated dye revealed an increase in R123 uptake with parasite development. The retention of the parasite-associated dye, as measured by fluorescence microscopy and spectrophotometry after extraction of R123 with butanol, was markedly reduced by treatment of the infected erythrocytes with a proton ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and an inhibitor of proton ATPase, dicyclohexylcarbodiimide (DCCD). These results indicate that the accumulation and retention of R123 in P. yoelii reflect the parasite membrane potential and suggest that the parasite plasma membrane has a membrane potential-generating proton pump.  相似文献   

15.
The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.  相似文献   

16.
Summary P. falciparum, an intraerythrocytic parasite, obtains nourishment primarily through phagocytosis of the host cytosol but also through the incorporation of extracellular small molecules which enter through the parasitized red cell's membrane via pores. Normal mature erythrocytes are incapable of endocytosis. Several lines of evidence suggest that extracellular large molecules may be taken up when the mature red cell is parasitized byP. falciparum, but direct evidence has been lacking. We now report the use of ferritin, an electron dense protein, to demonstrate endocytosis inP. falciparum infected red cells. Parasitized red cells incubated with ferritin internalize that macromolecule as demonstrated by electron microscopy. While normal red cells incubated with ferritin took up none of the tracer molecule, parasitized red cells internalized substantial amounts. In addition both ferritin and apoferritin inhibited the growth ofP. falciparum in a dose dependent fashion, again indicating endocytosis of a macromolecule. These data indicate thatP. falciparum can somehow stimulate the mature erythrocyte to engage in endocytosis. We also note that both infected and non-infected red cells in a culture in whichP. falciparum is growing become abnormally sticky for ferritin. Moreover, parasitized red cells bind I125-transferrin while non-parasitized erythrocytes do not. These observations suggest that a soluble parasite product alters the red cell membrane in a non-global manner, causing selective effects in relation to different proteins.  相似文献   

17.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.  相似文献   

18.
Palmitoylation is the post‐translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate‐Histidine‐Histidine‐Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl‐transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont‐expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite‐specific organelles such as the rhoptries and inner membrane complex. Knock‐out studies identified individual DHHCs that may be essential for blood‐stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood‐stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission‐blocking target. The localization and stage‐specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.  相似文献   

19.
ABSTRACT. Malarial parasites infecting mammalian hosts are considered to be homolactate fermentors at their asexual intraerythrocytic developmental stage; however, existing ultrastructural and biochemical evidence suggest that their acristate mitochondria could be involved in energy metabolism. In the present study, inhibitors of mitochondrial function including compounds which act on NADH and succinate dehydrogenases, electron transport and mitochondrial ATPase, as well as uncouplers, were found to inhibit the growth and propagation of the human parasite Plasmodium falciparum in in vitro cultures at concentrations that specifically affect mitochondrial functions. Direct measurement of parasite protein and nucleic acid synthesis in synchronized cultures showed that throughout the parasite life cycle both processes were inhibited, the latter process being more sensitive. These results strongly suggest that intraerythrocytic malarial parasites require mitochondrial energy production.  相似文献   

20.
Malaria plagues one out of every 30 humans and contributes to almost a million deaths, and the problem could worsen. Our current therapeutic options are compromised by emerging resistance by the parasite to our front line drugs. It is thus imperative to better understand the basic biology of the parasite and develop novel drugs to stem this disease. The most facile approach to analyse a gene's function is to remove it from the genome or inhibit its activity. Although genetic manipulation of the human malaria parasite Plasmodium falciparum is a relatively standard procedure, there is no optimal method to perturb genes essential to the intraerythrocytic development cycle—the part of the life cycle that produces the clinical manifestation of malaria. This is a severe impediment to progress because the phenotype we wish to study is exactly the one that is so elusive. In the absence of any utilitarian way to conditionally delete essential genes, we are prevented from investigating the parasite's most vulnerable points. This review aims to focus on the development of tools identifying essential genes of P. falciparum and our ability to elicit phenotypic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号