首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of ecotypic differentiation in the California Floristic Province have contributed greatly to plant evolutionary biology since the pioneering work of Clausen, Keck, and Hiesey. The extent of gene flow and genetic differentiation across interfertile ecotypes that span major habitats in the California Floristic Province is understudied, however, and is important for understanding the prospects for local adaptation to evolve or persist in the face of potential gene flow across populations in different ecological settings. We used microsatellite data to examine local differentiation in one of these lineages, the Pacific Coast polyploid complex of the plant genus Grindelia (Asteraceae). We examined 439 individuals in 10 different populations. The plants grouped broadly into a coastal and an inland set of populations. The coastal group contained plants from salt marshes and coastal bluffs, as well as a population growing in a serpentine grassland close to the coast, while the inland group contained grassland plants. No evidence for hybridization was found at the single location where adjacent populations of the two groups were sampled. In addition to differentiation along ecotypic lines, there was also a strong signal of local differentiation, with the plants grouping strongly by population. The strength of local differentiation is consistent with the extensive morphological variation observed across populations and the history of taxonomic confusion in the group. The Pacific Clade of Grindelia and other young Californian plant groups warrant additional analysis of evolutionary divergence along the steep coast-to-inland climatic gradient, which has been associated with local adaptation and ecotype formation since the classic studies of Clausen, Keck, and Hiesey.  相似文献   

2.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes.  相似文献   

3.
The studies of Clausen, Keck, and Hiesey (CKH) have been widely cited as exemplars of ecotypic differentiation in textbooks and in the primary literature. However, the scope of their findings and achievements is significantly greater than this. In this paper we analyze the research program of CKH, highlighting their major findings during the years when the modern synthesis of evolution was taking shape. That synthesis, curiously, drew little from their examples, although their studies at the Carnegie Institution represent conceptual and methodological work that is still relevant. The works of CKH not only embodied the principles of the nascent synthesis, but often provided needed supporting data. Their classic work, especially on Achillea and Potentilla, produced abundant evidence on population differentiation of many quantitative traits and plant phenotypes, as well as demonstrating the now commonly reported distinction between environmental and genetic determination of traits. Their ecological genetic investigations of quantitative traits in plants were in sharp contrast to contemporaneous animal studies on adaptation that focused on discrete polymorphisms--with correspondingly little influence of the environment on phenotypic expression. Of utmost importance was the demonstration by CKH of adaptive differentiation by natural selection and their approaches to understanding the genetic structure of populations.  相似文献   

4.
Phylogenetic analyses of nuclear rDNA sequences uphold Gottlieb et al.'s hypothesis that Layia discoidea, a morphologically unusual, serpentine-endemic herb of narrow distribution in central California, "budded off" recently (less than one million years ago) from a nearby lineage of the widespread L. glandulosa, which occurs on sandy soils across much of far western North America. Although L. discoidea and L. glandulosa retain complete interfertility, nuclear rDNA data for the two species are almost free of evolutionary noise, without evidence of gene flow between them; allopatric divergence of L. discoidea cannot be ruled out. Molecular data are consistent with a hypothesis of accelerated morphological evolution of L. discoidea and Gottlieb et al.'s suggestion that the closest relatives of L. discoidea are populations of L. glandulosa with yellow, rather than white, ray corollas, in accord with Clausen, Keck, and Hiesey's evidence of a gene for yellow ray coloration in the rayless L. discoidea.  相似文献   

5.
Enzyme electrophoresis was employed to examine genetic variation at 20 loci in 16 populations of Lasthenia minor and 18 populations of its presumed derivative species L. maritima. The purposes of the study were to ascertain levels of genetic variation in each species, to assess how the variation at enzyme-coding genes is apportioned within and among populations of each species, and to determine the level of divergence between the two species. The two species are both diploid annuals, similar morphologically, and produce fertile F1 hybrids when crossed. Lasthenia minor is self-incompatible and restricted to mainland California, whereas L. maritima is self-compatible and probably largely autogamous; it occurs on seabird rocks from central California to British Columbia. Mean genetic identities for pair-wise comparisons of populations of the two species are similar to values for populations of the same species, indicating they have not diverged at the 20 genes coding for soluble enzymes. Despite its more extensive geographical range, L. maritima exhibits only 50% of the genetic diversity of L. minor. The latter species apportions a greater amount of its diversity within populations, whereas the former harbors more diversity among populations than within them. This is probably a reflection of the different breeding systems of the two species. Six unique alleles were detected in L. minor, whereas only one novel allele was found in a single individual of L. maritima. The electrophoretic data are concordant with the suggestion that L. maritima is relatively recently derived from L. minor. The switch from outcrossing to selfing and selection of genotypes adapted to the chemically and physically unusual substrate on the seabird rocks are considered the critical steps in the evolution of L. maritima.  相似文献   

6.
Genome scans in recently separated species can inform on molecular mechanisms and evolutionary processes driving divergence. Large‐scale polymorphism data from multiple species pairs are also key to investigate the repeatability of divergence—whether radiations tend to show parallel responses to similar selection pressures and/or underlying molecular forces. Here, we used whole‐genome resequencing data from six wood white (Leptidea sp.) butterfly populations, representing three closely related species with karyomorph variation, to infer the species' demographic history and characterize patterns of genomic diversity and differentiation. The analyses supported previously established species relationships, and there was no evidence for postdivergence gene flow. We identified significant intraspecific genetic structure, in particular between karyomorph extremes in the wood white (L. sinapis)—a species with a remarkable chromosome number cline across the distribution range. The genomic landscapes of differentiation were erratic, and outlier regions were narrow and dispersed. Highly differentiated (FST) regions generally had low genetic diversity (θπ), but increased absolute divergence (DXY) and excess of rare frequency variants (low Tajima's D). A minority of differentiation peaks were shared across species and population comparisons. However, highly differentiated regions contained genes with overrepresented functions related to metabolism, response to stimulus and cellular processes, indicating recurrent directional selection on a specific set of traits in all comparisons. In contrast to the majority of genome scans in recently diverged lineages, our data suggest that divergence landscapes in Leptidea have been shaped by directional selection and genetic drift rather than stable recombination landscapes and/or introgression.  相似文献   

7.
This paper explores the complex relationship between the plant evolutionist G. Ledyard Stebbins and the animal evolutionist Theodosius Dobzhansky. The manner in which the plant evolution was brought into line, synthesized, or rendered consistent with the understanding of animal evolution (and especially insect evolution) is explored, especially as it culminated with the publication of Stebbins's 1950 book Variation and Evolution in Plants. The paper explores the multi-directional traffic of influence between Stebbins and Dobzhansky, but also their social and professional networks that linked plant evolutionists like Stebbins with Edgar Anderson, Carl Epling, and the 'Carnegie team' of Jens Clausen, David Keck, and William Hiesey with collaborators on the animal side like I. Michael Lerner, Sewall Wright and L.C. Dunn and other 'architects' of the synthesis like Ernst Mayr, Julian Huxley and George Gaylord Simpson. The compatibility in training, work styles, methodologies, goals, field sites, levels of analysis, and even choice of organismic systems is explored between Stebbins and Dobzhansky. Finally, the extent to which coevolution between plants and insects is reflected in the relationship is explored, as is the power dynamic in the relationship between two of the most visible figures associated with the evolutionary synthesis.  相似文献   

8.
Climate is one of the most important drivers for adaptive evolution in forest trees. Climatic selection contributes greatly to local adaptation and intraspecific differentiation, but this kind of selection could also have promoted interspecific divergence through ecological speciation. To test this hypothesis, we examined intra‐ and interspecific genetic variation at 25 climate‐related candidate genes and 12 reference loci in two closely related pine species, Pinus massoniana Lamb. and Pinus hwangshanensis Hisa, using population genetic and landscape genetic approaches. These two species occur in Southeast China but have contrasting ecological preferences in terms of several environmental variables, notably altitude, although hybrids form where their distributions overlap. One or more robust tests detected signals of recent and/or ancient selection at two‐thirds (17) of the 25 candidate genes, at varying evolutionary timescales, but only three of the 12 reference loci. The signals of recent selection were species specific, but signals of ancient selection were mostly shared by the two species likely because of the shared evolutionary history. FST outlier analysis identified six SNPs in five climate‐related candidate genes under divergent selection between the two species. In addition, a total of 24 candidate SNPs representing nine candidate genes showed significant correlation with altitudinal divergence in the two species based on the covariance matrix of population history derived from reference SNPs. Genetic differentiation between these two species was higher at the candidate genes than at the reference loci. Moreover, analysis using the isolation‐with‐migration model indicated that gene flow between the species has been more restricted for climate‐related candidate genes than the reference loci, in both directions. Taken together, our results suggest that species‐specific and divergent climatic selection at the candidate genes might have counteracted interspecific gene flow and played a key role in the ecological divergence of these two closely related pine species.  相似文献   

9.
The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, the first one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.  相似文献   

10.
Reproductive isolation is the defining characteristic of a biological species, and a common, but often untested prediction is a positive correlation between reproductive isolation and genetic divergence. Here, we test for this correlation in odonates, an order characterized by strong sexual selection. First, we measure reproductive isolation and genetic divergence in eight damselfly genera (30 species pairs) and test for a positive correlation. Second, we estimate the genetic threshold preventing hybrid formation and empirically test this threshold using wild populations of species within the Ischnura genus. Our results indicate a positive and strong correlation between reproductive isolation and genetic distance using both mitochondrial and nuclear genes cytochrome oxidase II (COII: r = 0.781 and 18S–28S: r = 0.658). Hybridization thresholds range from ?0.43 to 1.78% for COII and ?0.052–0.71% for 18S–28S, and both F1‐hybrids and backcrosses were detected in wild populations of two pairs of Ischnura species with overlapping thresholds. Our study suggests that threshold values are suitable to identify species prone to hybridization and that positive isolation–divergence relationships are taxonomically widespread.  相似文献   

11.
We have applied a two-gene system based on the sequences of nuclear genes encoding multi-domain plastid acetyl-CoA carboxylase (ACCase) and plastid 3-phosphoglycerate kinase (PGK) to study grass evolution. Our analysis revealed that these genes are single-copy in most of the grass species studied, allowing the establishment of orthologous relationships between them. These relationships are consistent with the known facts of their evolution: the eukaryotic origin of the plastid ACCase, created by duplication of a gene encoding the cytosolic multi-domain ACCase gene early in grass evolution, and the prokaryotic (endosymbiont) origin of the plastid PGK. The major phylogenetic relationships among grasses deduced from the nucleotide sequence comparisons of ACCase and PGK genes are consistent with each other and with the milestones of grass evolution revealed by other methods. Nucleotide substitution rates were calculated based on multiple pairwise sequence comparisons. On a relative basis, with the divergence of the Pooideae and Panicoideae subfamilies set at 60 million years ago (MYA), events leading to the Triticum/Aegilops complex occurred at the following intervals: divergence of Lolium (Lolium rigidum) at 35 MYA, divergence of Hordeum (Hordeum vulgare) at 11 MYA and divergence of Secale (Secale cereale) at 7 MYA. On the same scale, gene duplication leading to the multi-domain plastid ACCase in grasses occurred at 129 MYA, divergence of grass and dicot plastid PGK genes at 137 MYA, and divergence of grass and dicot cytosolic PGK genes at 155 MYA. The ACCase and PGK genes provide a well-understood two-locus system to study grass phylogeny, evolution and systematics.  相似文献   

12.
In this paper we attempt to investigate relationships between the amount of genetic divergence in nuclear genes and the degree of morphological differentiation for different sets of characters in Dolichopoda cave crickets. Six populations representing five Dolichopoda species from Central and Southern Italy have been studied. The overall genetic divergence at nuclear genes was estimated both by single copy DNA-DNA hybridization and allozyme frequencies at 26 loci. Euclidean distances for two multivariate sets of morphometric variables: one describing body and appendage morphology, the other male epiphallus shape. Results showed a close agreement between the branching patterns of ΔTm values from DNA hybridization and Nei's allozyme distance values. On the other hand, patterns of morphological divergence revealed independent trends, although the branching pattern based on epiphallus morphology matched to some extent the phylogenies inferred from molecular data. The relative value of molecular and morphological characters as reliable phylogenetic tracers was evaluated in relation to their dependence on evolutionary factors. Implications of these findings on the calibration of molecular clocks are also discussed. The absolute rate of molecular change based on scDNA was estimated to be at least 0.98% divergence/my/lineage. This result is in agreement with calibrations attempted on other insects. Estimates of time of divergence based on allozymes (Nei's D) were highly consistent with the estimate from geological data.  相似文献   

13.
Abstract

Genetic variation at 33 loci in three species of Leiopelma was examined by cellulose acetate electrophoresis of liver enzymes. Heterozygosity is apparently comparable to levels detected in other amphibians. Genetic differentiation between species is extensive. L. hochstetteri is greatly divergent from both L. archeyi and L. hamiltoni, but these two are relatively similar genetically, in agreement with morphological, ecological, and developmental patterns. We tentatively estimate that the divergence of hochstetteri from the other two species occurred during the Miocene, whereas that of archeyi and hamiltoni occurred during the Pliocene. Implications of the genetic data for conservation of these rare species are discussed.  相似文献   

14.
Genetic analysis of isozyme segregation patterns in Layia (Compositae) showed that cytosolic phosphoglucomutase isozymes are encoded by duplicated genes, and that the cytosolic NADP-dependent isocitrate dehydrogenase isozymes are encoded by duplicated genes in species with haploid chromosome numbers of n = 7 and triplicated genes in those with n = 8. The duplicated genes specifying both isozymes assorted independently in all species tested. An electrophoretic survey of phosphoglucomutase in diploid species representing six additional genera of Madiinae, the subtribe to which Layia is assigned, revealed that Achyrachaena, Calycadenia, Hemizonia, Holocarpha, and Madia all possessed duplicated genes. In Lagophylla, one species also had duplicated genes for the isozyme but a second species did not, a loss probably resulting from mutation or chromosomal deletion. The phosphoglucomutase duplication characterizes nearly the entire subtribe and may prove useful to identify phylogenetic relationships between the Madiinae and other subtribes.  相似文献   

15.
Based on a biochemical–genetic approach, heterozygosity and divergence of structural genes at 30 enzyme loci were analyzed in six dace species. In addition, intra- and interspecific divergence of gene expression was analyzed based on a sample of 12 to 15 loci. Mean heterozygosities per individual varied as follows: Tribolodon species, H obs = 0.007 ± 0.007 and H exp = 0.007 ± 0.007; T. ezoe, H obs = 0.045 ± 0.016 and H exp = 0.067 ± 0.029. Several variants of genetic distances were estimated. Standard Nei's distances (D N) varied from 0.145 to 0.284 in four dace species studied. As related to Tribolodon dace species, the following genetic distances were obtained for two members of other genera:Pseudaspius leptocephalus, D N = 0.269; Leuciscus waleckii, D N = 0.769. Based on the distance matrices, different clustering algorithms were realized. The main feature shared by different dendrograms was a separate position of the cluster joining Far-Eastern dace species, to whichP. leptocephalus and L. waleckii are successively added. Among the species studied, the proportion of loci similar by expression (E) varied from 87 to 100%. The greatest difference was found between landlocked and landlocked ecotypes of T. hakonensis, E = 67%. The following conclusions can be made: (1) Four studied species of the genus Tribolodon are rather well genetically differentiated. Diagnostic loci are available. (2) A nominal dace species, T. species, should be considered the fourth unambigous species of this genus, which is confirmed by its recent zoological acceptance of this species. (3) The origin and divergence of dace species belonging to the genus Tribolodon are relatively late (1 to 3 Myr ago) historical events. (4) Taxonomically, the genus Tribolodon belong to the tribe Pseudaspinini together with P. leptocephalus, which is confirmed by genetic data. (5) Data on heterozygosity and the divergence of structural and regulatory elements of genome, along with the proposed scheme of speciation types, suggest the following speciation modes for the species studied: for four species, adaptive divergence and for two species, genetic transformation.  相似文献   

16.
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4–6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10?6 per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.  相似文献   

17.
Macaca fascicularis and Macaca mulatta are two of the most commonly used laboratory macaques, yet their genetic differences at a genome‐wide level remain unclear. We analysed the multilocus DNA sequence data of 54 autosomal loci obtained from M. fascicularis samples from three different geographic origins and M. mulatta samples of Burmese origin. M. fascicularis shows high nucleotide diversity, four to five times higher than humans, and a strong geographic population structure between Indonesian‐Malaysian and Philippine macaques. The pattern of divergence and polymorphism between M. fascicularis and M. mulatta shows a footprint of genetic exchange not only within their current hybrid zone but also across a wider range for more than 1 million years. However, genetic admixture may not be a random event in the genome. Whereas randomly selected genic and intergenic regions have the same evolutionary dynamics between the species, some cytochrome oxidase P450 (CYP) genes (major chemical metabolizing genes and potential target genes for local adaptation) have a significantly larger species divergence than other genes. By surveying CYP3A5 gene sequences of more than a hundred macaques, we identified three nonsynonymous single nucleotide polymorphisms that were highly differentiated between the macaques. The mosaic pattern of species divergence in the genomes may be a consequence of genetic differentiation under ecological adaptation and may be a salient feature in the genomes of nascent species under parapatry.  相似文献   

18.
The genetic diversity and evolutionary divergence in Liquidambar species and Liquidambar orientalis varieties were compared with respect to the matK gene. A total of 66 genotypes from 18 different populations were sampled in southwestern Turkey. The matK region, which is about 1,512 bp in length, was sequenced and studied. L. orientalis, L. styraciflua, and L. formosana had similar magnitude of nucleotide diversity, while L. styraciflua and L. acalycina possessed higher evolutionary divergence. The highest evolutionary divergence was found between L. styraciflua and eastern Asian Liquidambar species (0.0102). However, the evolutionary divergence between L. orientalis and other species was of a similar magnitude. The maximum-parsimony phylogenetic tree showed that L. styraciflua and L. orientalis formed a closer clade while East Asian species were in a separate clade. This suggests that the North Atlantic Land Bridge through southern Greenland may have facilitated continuous distribution of Liquidambar species from southeastern Europe to eastern North America in early Tertiary period. The maximum-parsimony tree with only 18 Oriental sweetgum populations indicated that there were two main clusters: one with mainly L. orientalis var. integriloba and the other with var. orientalis and undetermined populations. High nucleotide diversity (0.0028) and divergence (0.00072) were found in L. orientalis var. integriloba populations and Muğla-1 geographical region. This region could be considered as the major refugium and genetic diversity center for the species. The low genetic diversity and divergence at intraspecies level suggest that L. orientalis populations in Turkey share an ancestral polymorphism from which two varieties may have evolved.  相似文献   

19.
The present work involves the assessment of level of genetic relatedness or divergence amongst the six North-Indian species of Lepidoptera belonging to family Pieridae and sub family Pierinae on the basis of sequence variation of 16S ribosomal RNA. The PCR amplified products of these species were directly sequenced using ABI Prism BigDye Terminator Sequencing Kits (Applied Biosystems). The multiple nucleotide sequence alignment analysis has revealed several differences across these species. Significantly high percentage of A + T base composition content ranging between 73.13% (Ixias pyrene ) and 79.20 % (Pieris brassica) was observed in studied species. The percentage divergence in the investigated species of Pieridae family varied from 5.5% to 21.7%. The two species of Catopsilia revealed minimum sequence divergence of only 5.5%, whereas the other two groups of Ixias and Pieris revealed 15.5% and 8.6% sequence divergence, respectively. Pieris canidia and Ixias pyrene are genetically most divergent (21.7%) amongst the studied lepidopteran species. Phylogenetic analysis based on 16S rRNA nucleotide sequence revealed grouping of six species of Lepidoptera in the form of two different clusters, each cluster being represented by two species from the same genera. The separate taxonomic grouping of these Indian species has been observed when compared with several species of Piernae and Coliadinae subfamilies from other country isolates.  相似文献   

20.
Intra- and interspecific variation and divergence of multilocus markers for genomic DNA of the sibling species from the thimmi group,Chironomus riparius and C. piger, were studied by PCR with arbitrary primers (RAPD). A high level of RAPD polymorphism was determined in both laboratory and natural populations of these species. The genetic distances were estimated between the C. riparius populations and between the sibling species C. riparius and C. piger. The genetic distance between C. riparius andC. piger was 4 to 5 times higher than that between the C. riparius populations. A comparison of the variation and divergence for the RAPD markers with those for other genomic markers—enzyme-coding genes and chromosomes (gene linkage groups)—showed that different components of the genome differed in their contribution to the genome divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号