首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel β-1,3–1,4-glucanase gene was identified in Bacillus sp. SJ-10 (KCCM 90078) isolated from jeotgal, a traditional Korean fermented fish. We analysed the β-1,3–1,4-glucanase gene sequence and examined the recombinant enzyme. The open reading frame of the gene encoded 244 amino acids. The sequence was not identical to any β-glucanases deposited in GenBank. The gene was cloned into pET22b(+) and expressed in Escherichia coli BL21. Purification of recombinant β-1,3–1,4-glucanase was conducted by affinity chromatography using a Ni-NTA column. Enzyme specificity of β-1,3–1,4-glucanase was confirmed based on substrate specificity. The optimal temperature and pH of the purified enzyme towards barley β-glucan were 50 °C and pH 6, respectively. More than 80 % of activity was retained at temperatures of 30–70 °C and pH values of 4–9, which differed from all other bacterial β-1,3–1,4-glucanases. The degradation products of barley β-glucan by β-1,3–1,4-glucanase were analysed using thin-layer chromatography, and ultimately glucose was produced by treatment with cellobiase.  相似文献   

2.
Trichoderma species have become the important means of biological control for fungal diseases. This research was carried on to access the high β-1,3-glucanase and β-1,4-glucanase enzyme producer of Trichoderma species isolates using two different carbon sources for finding a method to obtain more concentrate culture filtrates. Therefore, 14 Trichoderma isolates belonging to species: Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum1, T. orientalis, T. harzianum2, T. brevicompactum, T. viride and T. spirale were cultured in Wiendling’s liquid medium plus 0.5% glycerol or 0.5% Phytophthora sojae-hyphe as the carbon source in shaking and non-shaking (stagnant) statuses. Enzyme activity rate and total protein were evaluated in raw, acetony and lyophilized concentrated culture filtrates and the specific enzyme activity of β-1,3-glucanase and β-1,4-glucanase were measured by milligramme glucose equivalent released per minute per milligramme total protein in culture filtrates. The results showed that using Phytophthora – hyphe in medium increased the enzyme activities as compared to glycerol at all Trichoderma species which suggested that these substrates can also act as inducer for synthesis of lytic enzymes, in addition the most enzymes activity was observed in the lyophilised concentrated culture filtrate. The most successful species in β-1,3-glucanase and β-1,4-glucanase enzymes activities were T. brevicompactum and T. virens and these species can be used for mass production of these enzymes which are supposed to be used in commercial formulation and also will be able to control P. sojae directly.  相似文献   

3.
A novel alkaline β-1,3-1,4-glucanase (McLic1) from a thermophilic fungus, Malbranchea cinnamomea, was purified and biochemically characterized. McLic1 was purified to homogeneity with a purification fold of 3.1 and a recovery yield of 3.7 %. The purified enzyme was most active at pH 10.0 and 55 °C, and exhibited a wide range of pH stability (pH 4.0–10.0). McLic1 displayed strict substrate specificity for barley β-glucan, oat β-glucan and lichenan, but did not show activity towards other tested polysaccharides and synthetic p-nitrophenyl derivates, suggesting that it is a specific β-1,3-1,4-glucanase. The K m values for barley β-glucan, oat β-glucan and lichenan were determined to be 0.69, 1.11 and 0.63 mg mL?1, respectively. Moreover, the enzyme was stable in various non ionic surfactants, oxidizing agents and several commercial detergents. Thus, the alkaline β-1,3-1,4-glucanase may have potential in industrial applications, such as detergent, paper and pulp industries.  相似文献   

4.
The specificity of 1,3-1,4-β-glucanase from Synechocystis PCC6803 (SsGlc) was investigated using novel substrates 1,3-1,4-β-glucosyl oligosaccharides, in which 1,3- and 1,4-linkages are located in various arrangements. After the enzymatic reaction, the reaction products were separated and determined by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As a result, SsGlc was found to hydrolyze the pentasaccharides, which possess three contiguous 1,4-β-glycosidic linkages (cellotetraose sequence) adjacent to 1,3-β-linkage, but none of the other oligosaccharides were hydrolyzed. To further analyze the specificity, kinetic measurements were performed using polymeric substrates and 4-methylumbelliferyl derivatives of laminaribiose and cellobiose (1,3-β-(Glc)2-MU and 1,4-β-(Glc)2-MU). The kcat/Km value obtained for barley β-glucan was considerably larger than that for lichenan, indicating that SsGlc prefers 1,3-1,4-β-glucan possessing a larger amount of cellotetraose sequence. This is consistent with the data obtained for 1,3-1,4-β-glucosyl oligosaccharides. However, the kcat/Km value obtained for 1,4-β-(Glc)2-MU was considerably lower than that for 1,3-β-(Glc)2-MU, suggesting inconsistency with the data obtained from the other natural substrates. It is likely that the kinetic data obtained from such chromophoric substrates do not always reflect the true enzymatic properties.  相似文献   

5.
Endo-1,3(4)-β-glucanase (EC 3.2.1.6) from Vigna aconitifolia sprouts was purified to 14.5 fold by gel filtration and ion-exchange chromatography. The enzyme was found to be a glycoprotein, its activity was Ca2+ dependent and specific for β-1,3 linkages in different polysaccharides. The Km value of the enzyme was estimated to be 3.0 mg ml−1 for β-d-glucan as substrate. Circular dichroism studies revealed 8% α-helix, 48% β-pleated and 44% random coil in its secondary structure. Purified β-glucanase was then successfully co-immobilized with glucose oxidase in agarose-chitosan beads, showing better immobilization yield, operational range and stability as compared with the crude β-glucanase beads. The immobilized β-glucanase was successfully used for mini-bioreactor fabrication.  相似文献   

6.
The enzyme system (culture filtrate) from Streptomyces sp. W19-1 formed gentiobiose from curdlan (β-1,3-glucan). The mechanism of the formation of gentiobiose was investigated in this study.

Two kinds of enzymes, β-1,3-glucanase and β-glucosidase (transglucosidase), were isolated from the culture filtrate of the strain by hydroxylapatite column chromatography. The β-1,3-glucanase hydrolyzed curdlan to glucose and laminari-oligosaccharides, and the β-glucosidase formed gentiobiose by transglucosylation from the resultant laminari-oligosaccharides, especially laminaribiose. The two enzymes took part in the formation of gentiobiose from curdlan.  相似文献   

7.
《Developmental biology》1986,117(1):277-285
The enzyme β-1,3-glucanase is contained in the unfertilized eggs of most species of sea urchin. In some species, including Lytechinus variegatus, there is also substantial activity following gastrulation, and during remaining larval development. To determine if the same form of β-1,3-glucanase is present in both unfertilized eggs and after gut differentiation, an affinity purification procedure was utilized to isolate enzyme from unfertilized Lytechinus eggs. β-1,3-Glucanase is a 70,000-Da protein in this species, similar to the molecular weight of enzyme isolated from Strongylocentrotus purpuratus. Purified enzyme was used to generate an antibody that specifically recognized a 70,000-Da protein in unfertilized eggs by Western blot analysis, and stained the cortical granules of unfertilized eggs by immunofluorescence. The antibody also specifically immunoprecipitated β-1,3-glucanase activity from egg sonicates. The antibody was used to demonstrate that the form of β-1,3-glucanase present following gastrulation is antigenically distinct from the egg form. The 70,000-Da protein recognized by the antibody was no longer present by 24 hr, but embryos of this and later stages contained substantial amounts of activity, indicating the enzyme at these stages differs from the egg-specific form. In addition, the antibody was not capable of immunoprecipitating enzyme activity from pluteus sonicates. β-1,3-Glucanase has been partially purified from pluteus stage embryos, and appears to be a complex of approximately 200,000 Da. The enzyme is specific to endoderm and appears following differentiation of the gut, suggesting that it may function in larval digestion.  相似文献   

8.
An enzyme that has both β-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the β-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to β-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

9.
β-1,3-1,4-glucanase (EC3.2.1.73) as an important industrial enzyme has been widely used in the brewing and animal feed additive industry. To improve expression efficiency of recombinant β-1,3-1,4-glucanase from Bacillus licheniformis EGW039(CGMCC 0635) in methylotrophic yeast Pichia pastoris GS115, the DNA sequence encoding β-1,3-1,4-glucanase was designed and synthesized based on the codon bias of P. pastoris, the codons encoding 96 amino acids were optimized, in which a total of 102 nucleotides were changed, the G+C ratio was simultaneously increased from 43.6 to 45.5%. At shaking flask level, β-1,3-1,4-glucanase activity is 67.9 and 52.3 U ml−1 with barley β-glucan and lichenan as substrate, respectively. At laboratory fermentor level, the secreted protein concentration is approximately 250 mg l−1. The β-1,3-1,4-glucanase activity is 333.7 and 256.7 U ml−1 with barley β-glucan and lichenan as substrate, respectively; however, no activity of this enzyme on cellulose is observed. Compared to the nonoptimized control, expression level of the optimized β-1,3-1,4-glucanase based on preferred codons in P. pastoris shown a 10-fold higher level. The codon-optimized enzyme was approximately 53.8% of the total secreted protein. The optimal acidity and temperature of this recombinant enzyme were pH 6.0 and 45°C, respectively.  相似文献   

10.
An endo β-l,3-glucanase was purified in crystalline form from a culture filtrate of Rhizopus chinensis R-69. Molecular weight of the enzyme was determined to be 23,000 by molecular sieve chromatography and the mode of action of the enzyme was suggested to be a less random type of β-1,3-glucanase. Km and Vmax of the enzyme for laminarin are 3.4 g/liter and 1541. U., respectively. The enzyme does not decompose the cell walls of living yeast; it decomposes, however, the preparation of yeast glucan.  相似文献   

11.
In this study, a novel β-1,3-1,4-glucanase gene (designated as PtLic16A) from Paecilomyces thermophila was cloned and sequenced. PtLic16A has an open reading frame of 945 bp, encoding 314 amino acids. The deduced amino acid sequence shares the highest identity (61%) with the putative endo-1,3(4)-β-glucanase from Neosartorya fischeri NRRL 181. PtLic16A was cloned into a vector pPIC9K and was expressed successfully in Pichia pastoris as active extracellular β-1,3-1,4-glucanase. The recombinant β-1,3-1,4-glucanase (PtLic16A) was secreted predominantly into the medium which comprised up to 85% of the total extracellular proteins and reached a protein concentration of 9.1 g l−1 with an activity of 55,300 U ml−1 in 5-l fermentor culture. The enzyme was then purified using two steps, ion exchange chromatography, and gel filtration chromatography. The purified enzyme had a molecular mass of 38.5 kDa on SDS–PAGE. It was optimally active at pH 7.0 and a temperature of 70°C. Furthermore, the enzyme exhibited strict specificity for β-1,3-1,4-d-glucans. This is the first report on the cloning and expression of a β-1,3-1,4-glucanase gene from Paecilomyces sp.  相似文献   

12.
A thermophilic glycoside hydrolase family 16 (GH16) β-1,3-1,4-glucanase from Clostridium thermocellum (CtLic16A) holds great potentials in industrial applications due to its high specific activity and outstanding thermostability. In order to understand its molecular machinery, the crystal structure of CtLic16A was determined to 1.95 Å resolution. The enzyme folds into a classic GH16 β-jellyroll architecture which consists of two β-sheets atop each other, with the substrate-binding cleft lying on the concave side of the inner β-sheet. Two Bis–Tris propane molecules were found in the positive and negative substrate binding sites. Structural analysis suggests that the major differences between the CtLic16A and other GH16 β-1,3-1,4-glucanase structures occur at the protein exterior. Furthermore, the high catalytic efficacy and thermal profile of the CtLic16A are preserved in the enzyme produced in Pichia pastoris, encouraging its further commercial applications.  相似文献   

13.
Bacillus No. K–12–5 isolated from soil produced a β-1,3-glucanase in alkaline media. The characteristic point of this bacteria was especially good growth in alkaline media, and no growth was observed in neutral media such as nutrient broth. The β-1,3-glucanase of Bacillus No. K–12–5 was purified by DEAE-cellulose, Sephadex G–100 and hydroxyl apatite columns. The enzyme was most active at pH 5.5 ~ 8.0 which was much broader and higher than those of Bacillus criculans enzyme. The sedimentation constant was about 3.6 and molecular weight was about 40,000. The isoelectric point was about pH 3.5 and the enzyme was most stable at pH 7. Calcium ion was not effective to stabilize the enzyme. The enzyme did not hydrolyse laminaritriose. Laminaritetraose was hydrolysed, and glucose and laminaritriose were detected in the hydrolysate. The enzyme split laminaran at random and yielded glucose, laminaribiose, laminaritriose and higher oligosaccharides. If the enzyme is a single entity, it is a type of endo-β-1,3-glucanase. However, activity of hydrolysis of fungal cell walls was lower than that of B. circulans enzyme.  相似文献   

14.
β-1,3-1,4-Glucanase has been broadly used in feed and brewing industries. According to the codon bias of Pichia pastoris, the Bacillus subtilis MA139 β-1,3-1,4-glucanase gene was de novo synthesized and expressed in P. pastoris X-33 strain under the control of the alcohol oxidase 1 promoter. In a 10-L fermentor, the β-1,3-1,4-glucanase was overexpressed with a yield of 15,000 U/mL by methanol induction for 96 h. The recombinant β-1,3-1,4-glucanase exhibited optimal activity at 40°C and pH 6.4. The activity of the recombinant β-1,3-1,4-glucanase was not significantly affected by various metal ions and chemical reagents. To our knowledge, the expression of this β-1,3-1,4-glucanase from Bacillus sp. in P. pastoris is in relatively high level compared to previous reports. These biochemical characteristics suggest that the recombinant β-1,3-1,4-glucanase has a prospective application in feed and brewing industries.  相似文献   

15.
Phytopathogenic fungi devastate agricultural crops worldwide. The biological agents, such as Trichoderma spp., antagonize phytopathogenic fungi by secreting various cell wall-degrading enzymes, for example, endochitinase and β-1,3-glucanase that target glycosidic linkages in β-glucan and chitin polymers of fungal cell walls, thus inhibiting pathogen growth. In this study, two antifungal genes endochitinase and β-1,3-glucanase cloned from local Trichoderma spp. were ligated in pET28a+ expression vector individually to generate two recombinant vectors. The vectors were mobilized into Escherichia coli host strain Rosetta-gami 2 for protein expression, and the 6xHis-tagged recombinant proteins were purified through Ni-NTA affinity chromatography. The purified proteins were individually confronted in vitro with pure cultures of Phytophthora parasitica (destructive pathogen affecting several hundred plant species worldwide) for analyzing their effect on pathogen growth. In vitro confrontation assay revealed P. parasitica growth inhibition by purified β-1,3-glucanase. The pathogen growth inhibition was due to hyphal morphological distortions, such as breakages, swelling, and holes evinced through electron micrography confirming direct role of β-1,3-glucanase in pathogen structural degradation.  相似文献   

16.
Inoculation of different bean cultivars with Colletotrichum lindemuthianum race β results in a marked increase of β-1,3-glucanase and chitinase activities. The increase is much faster in incompatible than in compatible interactions. Induced β-1,3-glucanase (pI 9,5) differs from the constitutive β-1,3-glucanase (pI 4,5) of healthy plants. The induced enzyme can partly degrade, in vitro, the cell walls of C. lindemutianum. The possible role of these hydrolytic enzymes inplants defence is discussed.  相似文献   

17.
We report the molecular characterization of β-1,3-glucanase-producing Bacillus amyloliquefaciens—an endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. After cloning and sequencing, the β-1,3-glucanase gene was found to be 747 bp in length. A homology model of the β-1,3-glucanase protein was built from the amino acid sequence obtained upon translation of the gene. The target β-1,3-glucanase protein and the template protein, endo β-1,3-1,4-glucanase protein (PDB ID: 3o5s), were found to share 94 % sequence identity and to have similar secondary and tertiary structures. In the modeled structure, three residues in the active site region of the template—Asn52, Ile157 and Val158—were substituted with Asp, Leu and Ala, respectively. Computer-aided docking studies of the substrate disaccharide (β-1, 3-glucan) with the target as well as with the template proteins showed that the two protein-substrate complexes were stabilized by three hydrogen bonds and by many van der Waals interactions. Although the binding energies and the number of hydrogen bonds were the same in both complexes, the orientations of the substrate in the active sites of the two proteins were different. These variations might be due to the change in the three amino acids in the active site region of the two proteins. The difference in substrate orientation in the active site could also affect the catalytic potential of the β-1,3 glucanase enzyme.  相似文献   

18.
In this work, we identified a gene from Theobroma cacao L. genome and cDNA libraries, named TcGlu2, that encodes a β-1,3-1,4-glucanase. The TcGlu2 ORF was 720 bp in length and encoded a polypeptide of 239 amino acids with a molecular mass of 25.58 kDa. TcGlu2 contains a conserved domain characteristic of β-1,3-1,4-glucanases and presented high protein identity with β-1,3-1,4-glucanases from other plant species. Molecular modeling of TcGlu2 showed an active site of 13 amino acids typical of glucanase with β-1,3 and 1,4 action mode. The recombinant cDNA TcGlu2 obtained by heterologous expression in Escherichia coli and whose sequence was confirmed by mass spectrometry, has a molecular mass of about 22 kDa (with His-Tag) and showed antifungal activity against the fungus Moniliophthora perniciosa, causal agent of the witches’ broom disease in cacao. The integrity of the hyphae membranes of M. perniciosa, incubated with protein TcGlu2, was analyzed with propidium iodide. After 1 h of incubation, a strong fluorescence emitted by the hyphae indicating the hydrolysis of the membrane by TcGlu2, was observed. To our knowledge, this is the first study of a cacao β-1,3-1,4-glucanase expression in heterologous system and the first analysis showing the antifungal activity of a β-1,3-1,4-glucanase, in particular against M. perniciosa.  相似文献   

19.
20.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) is one of the most destructive insect pests of cereals world-wide. Although resistant cultivars have been bred, the biochemical mechanism of resistance is unknown. The aim of this work was to gain information on the mechanism of resistance which could contribute to more directed breeding of resistant cultivars in the future. The effect of RWA infestation on the inter- and intracellular β-1,3-glucanase activities was studied in different resistant wheat (Triticum aestivum L.) cultivars containing the Dn-1 gene for RWA resistance and corresponding near-isogenic susceptible cultivars. The activity was determined spectrophotometrically by measuring the release of glucose from laminarin. Infestation differentially induced the intra- and intercellular activities to much higher levels in resistant than susceptible cultivars within 48 h. According to immunological studies induced enzyme activities were due to increased protein levels. The intracellular β-1,3-glucanase contained about 8% exo-activity. The exo-activity made an insignificant contribution to the intercellular activity. The genetic background into which the resistance gene was bred did affect the level of activity that corresponded to the resistance performance. Seven apoplastic isoforms of β-1,3-glucanase, varying from acidic to basic, were resolved by isoelectric focusing. All isoenzymes were equally induced and no specific one could be linked to resistance or susceptibility. The RWA induced β-1,3-glucanase activity in resistant cultivars closely resembles defence responses during pathogenesis and seems to be part of a general defence response like the hypersensitive reaction (HR), which confers resistance to the RWA. This knowledge might be helpful in future to identify genes for RWA resistance. The increased β-1,3-glucanase activity after RWA infestation might serve as an additional measure to biochemically trace resistance in crosses during breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号