首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular nature of the Ca2+-dependent cell-cell adhesion system in mouse teratocarcinoma (t-CDS) was studied using a monoclonal antibody recognizing t-CDS. We isolated a hybridoma clone producing a monoclonal antibody (ECCD-1) able to disrupt cell-cell adhesion when added to monolayer cultures of teratocarcinoma cells. This antibody bound to the cells with intact t-CDS, resulting in an inhibition of their aggregation, but did not bind to cells from which t-CDS was removed by trypsin treatment in the absence of Ca2+. The binding of ECCD-1 to cell surfaces required Ca2+ but not other ions. Western blot analysis showed that ECCD-1 recognizes multiple cell surface proteins, the major one of which is a component with a molecular weight of 124,000. The binding of ECCD-1 to these antigens was Ca2+-dependent even in cell-free systems, suggesting that the molecules involved in t-CDS undergo conformational changes by binding with Ca2+, leading to conversion of their molecular structure into an active form. ECCD-1 also reacted with 8-cell stage mouse embryos and with certain types of epithelial cells (excluding fibroblastic cells) in various differentiated tissues collected from mouse fetuses, again affecting their cell-cell adhesion. We also showed that a monoclonal antibody (DE1) raised against gp84 (F. Hyafil et al., 1981, Cell 26, 447-454) recognizes the same antigens as ECCD-1.  相似文献   

2.
The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.  相似文献   

3.
The role of Ca2+-dependent cell-cell adhesion molecules, E- and P-cadherins, in the histogenesis of mouse embryonic lung was studied. All epithelial cells of the lung express both E- and P-cadherin at the early developmental stage. P-cadherin, however, gradually disappears during development, initially from the main bronchi and eventually from all epithelial cells. When a monoclonal antibody to E-cadherin (ECCD-1) was added to monolayer cultures of lung epithelial cells, it induced a partial disruption of their cell-cell adhesion, while a monoclonal antibody to P-cadherin (PCD-1) showed a subtle effect. A mixture of the two antibodies, however, displayed a synergistic effect. We then tested the effect of the antibodies on the morphogenesis of lung primordia using an organ culture system. In control media, the explants formed typical bronchial trees. In the presence of ECCD-1, the explants grew up at the same rate as in the control, but their morphogenesis was affected. The control explants formed round epithelial lobules with an open luminal space at the tips of the bronchial trees, whereas the lobules of explants incubated with ECCD-1 tended to be flat and devoid of the luminal space. PCD-1 showed a similar but very small effect. A mixture of the two antibodies, however, showed a stronger effect: the branching of epithelia was partially suppressed and the arrangement of epithelial cells was distorted in many places. These results suggest that E- and P-cadherin have a synergistic role in the organization of epithelial cells in lung morphogenesis.  相似文献   

4.
5.
《Life sciences》1994,54(11):PL201-PL208
The presence and regulation of cadherin localization in osteoblastic cells were examined. Monoclonal antibody (ECCD-1) that interferes with E-cadherin function prevented cell adhesion in UMR 106-H5 rat osteosarcoma cells and non-tumorigenic mouse calvarial MC3T3-E1 cells, whereas CCL39 fibroblast adhesion was not affected. Immunofluorescent antibodies (ECCD-2 and polyclonal L-CAM P1) revealed cadherins are localized along the osteoblastic cell-cell boundaries. Exposure of UMR 106-H5 cells to bovine parathyroid hormone (1–84) (PTH; 10 ng/ml × 1 hr) or low calcium medium (1.0 – 0.025 Mn) produced cellular retraction accompanied by intense immunofluorescence for cadherins throughout cells with a corresponding loss of punctate localization at remaining cell-cell adhesion points. Western immunoblot analysis indicated 108 kd and 115 kd cadherins are present, with a smaller 29.5 kd band that became predominantly associated with the cytosolic fraction of cells treated with parathyroid hormone or lowered calcium. The results demonstrate E-like cadherins are present in osteoblastic cells and implicate a regulatory role for parathyroid hormone and calcium in cadherin function and localization.  相似文献   

6.
The monoclonal antibody ECCD-1 recognizing a certain class of cell surface proteins inhibits the Ca2+-dependent cell-to-cell adhesion in teratocarcinoma stem cells. In this paper, we studied the effect of ECCD-1 on cell-to-cell communication in PCC3 cells by measuring the transfer of lucifer yellow between cells. To this aim, PCC3 cells were cultured in the presence of ECCD-1 for various periods, and then the fluorescent dye was injected into a cell located in the center of cell colonies, followed by counting number of cells to which the dye was transferred. The results showed that ECCD-1 inhibits the dye transfer between cells, suggesting that the Ca2+-dependent cell-to-cell adhesion system (CDS) is essential for the functions of gap junction.  相似文献   

7.
We isolated a mouse monoclonal antibody that disrupts Ca2+-dependent cell-cell adhesion of amphibian (Xenopus laevis) cells. When added to culture medium, the monoclonal antibody completely disrupted cell-cell adhesion of amphibian cells in monolayer culture and specifically inhibited Ca2+-dependent cell-cell adhesion of dissociated cells in reaggregation experiments. The monoclonal antibody recognized a 140 kDa cell surface glycoprotein antigenically different from the previously reported Ca2+-dependent cell-cell adhesion molecules (cadherins).  相似文献   

8.
Bone morphogenetic proteins (BMPs) are important regulators of cellular differentiation and embryonic development. Beta catenin mediated nuclear signaling has been implicated in BMP-2-modulated chondrogenic differentiation in the pluripotential stem cell line C3H10T1/2. However, there is little information on the functional role of beta catenin in BMP-2-modulated differentiation of primary nontransformed mesenchymal cells. Here, we present evidence to show that BMP-2-induced chondrogenic differentiation in high-density primary mesenchymal culture is associated with a significant decrease in membrane-bound beta catenin by 72 hours compared to controls. Nuclear localization of beta catenin is not detectable by immunofluorescence and the TCF-responsive reporter vector TOPFLASH shows only background activity during chondrogenic differentiation. BMP-2-treated cultures show reduced cell-cell adhesion by 72 hours, which correlates with the changes in levels of membrane-bound beta catenin. Up-regulation of membrane-bound beta catenin blocks the effect of BMP-2 on both chondrogenic differentiation and cell-cell adhesiveness. These findings suggest that BMP-2 can modulate the adhesivity of adherens junctions through regulation of membrane bound beta catenin.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are important regulators of cellular differentiation and embryonic development. Beta catenin mediated nuclear signaling has been implicated in BMP-2-modulated chondrogenic differentiation in the pluripotential stem cell line C3H10T1/2. However, there is little information on the functional role of beta catenin in BMP-2-modulated differentiation of primary nontransformed mesenchymal cells. Here, we present evidence to show that BMP-2-induced chondrogenic differentiation in high-density primary mesenchymal culture is associated with a significant decrease in membrane-bound beta catenin by 72 hours compared to controls. Nuclear localization of beta catenin is not detectable by immunofluorescence and the TCF-responsive reporter vector TOPFLASH shows only background activity during chondrogenic differentiation. BMP-2-treated cultures show reduced cell-cell adhesion by 72 hours, which correlates with the changes in levels of membrane-bound beta catenin. Upregulation of membrane-bound beta catenin blocks the effect of BMP-2 on both chondrogenic differentiation and cell-cell adhesiveness. These findings suggest that BMP-2 can modulate the adhesivity of adherens junctions through regulation of membrane bound beta catenin.  相似文献   

10.
Cells in a plant differentiate according to their positions and use cell-cell communication to assess these positions. Similarly, single cells in suspension cultures can develop into somatic embryos, and cell-cell communication is thought to control this process. The monoclonal antibody JIM8 labels an epitope on cells in specific positions in plants. JIM8 also labels certain cells in carrot embryogenic suspension cultures. We have used JIM8 and secondary antibodies coupled to paramagnetic beads to label and immunomagnetically sort single cells in a carrot embryogenic suspension culture into pure populations. Cells in the JIM8(+) population develop into somatic embryos, whereas cells in the JIM8(-) population do not form somatic embryos. However, certain cells in JIM8(+) cultures (state B cells) undergo asymmetric divisions, resulting in daughter cells (state C cells) that do not label with JIM8 and that sort to JIM8(-) cultures. State C cells are competent to form somatic embryos, and we show here that a conditioned growth medium from a culture of JIM8(+) cells allows state C cells in a JIM8(-) culture to go on and develop into somatic embryos. JIM8 labels cells in suspension cultures at the cell wall. Therefore, a cell with a role in cell-cell communication and early cell fate selection can be identified by an epitope in its cell wall.  相似文献   

11.
The appearance of differentiated cells in embryonal carcinoma (EC) cultures can be inhibited by culturing the cells on fibroblast feeder layers. To determine whether or not feeder layers act by increasing the probability of stem cell renewal, growth and differentiation were monitored in cultures of F9 (subclone OTF9 -63) EC cells exposed to retinoic acid (RA) in either the presence or absence of feeder layers. By measuring the fraction of laminin-positive TROMA 1-positive or alkaline phosphatase-negative cells, it was determined that the frequency of differentiated cells in RA-treated F9 cultures was reduced by 70-80% when cells were cultured on fibroblast feeder layers instead of gelatin-coated dishes. Experiments in which EC cells were cultured in close proximity to a feeder layer demonstrated that cell-cell contact was required for maximal inhibition of differentiation. The probability of stem cell renewal was determined by measuring the number of colony-forming cells in RA-treated cultures as a function of time. Analysis of the data demonstrated that the probabilities of stem cell renewal were 0.5 and 0.25 during the first and second 48 h periods, respectively, following addition of RA for cells cultured without feeder layers. Cultures maintained on feeder layers exhibited a stem cell renewal probability of 0.72. Thus, feeder layers reduce the frequency of differentiated cells in RA-treated cultures by increasing the probability of stem cell renewal. Determining the mechanism by which feeder layers counteract the effect of a chemically defined differentiation inducer should help to uncover the processes that regulate the probability of stem cell renewal.  相似文献   

12.
Cartilage formation in the embryonic limb is presaged by a cellular condensation phase that is mediated by both cell-cell and cell-matrix interactions. N-Cadherin, a Ca(2+)-dependent cell-cell adhesion molecule, is expressed at higher levels in the condensing mesenchyme, followed by down-regulation upon chondrogenic differentiation, strongly suggesting a functional role in the cellular condensation process. To further examine the role of N-cadherin, we have generated expression constructs of wild type and two deletion mutants (extracellular and intracellular) of N-cadherin in the avian replication-competent, RCAS retrovirus, and transfected primary chick limb mesenchymal cell cultures with these constructs. The effects of altered, sustained expression of N-cadherin and its mutant forms on cellular condensation, on the basis of peanut agglutinin (DNA) staining, and chondrogenesis, based on expression of chondrocyte phenotypic markers, were characterized. Cellular condensation was relatively unchanged in cultures overexpressing wild type N-cadherin, compared to controls on all days in culture. However, expression of either of the deletion mutant forms of N-cadherin resulted in decreased condensation, with the extracellular deletion mutant demonstrating the most severe inhibition, suggesting a requirement for N-cadherin mediated cell-cell adhesion and signaling in cellular condensation. Subsequent chondrogenic differentiation was also affected in all cultures overexpressing the N-cadherin constructs, on the basis of metabolic sulfate incorporation, the presence of the cartilage matrix proteins collagen type II and cartilage proteoglycan link protein, and alcian blue staining of the matrix. The characteristics of the cultures suggest that the N-cadherin mutants disrupt proper cellular condensation and subsequent chondrogenesis, while the cultures overexpressing wild type N-cadherin appear to condense normally, but are unable to proceed toward differentiation, possibly due to the prolonged maintenance of increased cell-cell adhesiveness. Thus, spatiotemporally regulated N-cadherin expression and function, at the level of both homotypic binding and linkage to the cytoskeleton, is required for chondrogenesis of limb mesenchymal cells.  相似文献   

13.
Human adipose-derived mesenchymal stem cells (MSCs) can be stimulated to differentiate into hepatic cells. MSC differentiation was induced by fibroblast growth factor-4, hepatocyte growth factor, oncostatin M, and dexamethasone. The influence of quercetin on MSC hepatic differentiation in culture was assayed, and 1 or 10 μmole/L quercetin added into the induction medium enhanced the manifestation of MSC hepatic differentiation. Urea secretion, cytokeratin 19 expression, and α-fetoprotein synthesis were increased. Quercetin modulated CYP1A–cytochrome P450 activity in the differentiated cells. MSCs differentiated in the presence of quercetin exhibited higher viability and resistance to oxidative stress.  相似文献   

14.
Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types. MSCs exist in several tissues such as the bone marrow, adipose, muscle, cartilage, and tendon. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries. MSCs can be prepared from bone marrow (BM-MSCs) and adipose (AD-MSCs); however, these MSCs exhibit senescence-associated growth arrest and display inevitable heterogeneity. We established several AD-MSC cell lines from a p53-knockout (KO) mouse. These cell lines were immortalized, but no cell lines grew anchorage-independently, suggesting that they are not cancerous. They differentiated into adipocytes, osteoblasts, and chondrocytes by treatment with certain stimuli. Moreover, following injection into the tail vein, the cells migrated into the wounded region of the liver and differentiated into hepatocytes. We succeeded in establishing several AD-MSC clonal cell lines that maintain the tissue-specific markers and characteristics of the developmental phase. These clonal cell lines will serve as important tools to study the mechanism of differentiation of MSCs.  相似文献   

15.
Elevation of the calcium concentration in human keratinocyte culture rapidly induces the redistribution of E-cadherin, P-cadherin, vinculin, beta 1 integrin, and desmoplakin to the cell-cell borders. Antibody to E-cadherin that blocks its functional activity delays the redistribution of each marker by several hours. Furthermore, antibody to E-cadherin interferes with normal, calcium-induced stratification of keratinocytes. Although several uneven vertical layers of cells can be detected in the presence of anti-E-cadherin antibody, the superficial cells appear defective in their adhesion. They do not flatten upon the basal layer nor do they enlarge, as do the controls; but rather they remain in groups of small cells connected by a line of single cells or by very long processes. In spite of the deformed appearance of the superficial cells in the presence of anti-E-cadherin IgG, these cells express the differentiation marker filaggrin, do not express P-cadherin, and concentrate desmoplakin at their cell-cell borders, consistent with the pattern in normally stratified cultures and in epidermis. These studies suggest a central role for E-cadherin in the regulation of keratinocyte intercellular junction organization as well as in epidermal morphogenesis.  相似文献   

16.
17.
Pericytes have been suggested to play a role in regulation of vessel stability; one mechanism for this stabilization may be via pericyte-derived vascular endothelial growth factor (VEGF). To test the hypothesis that differentiation of mesenchymal cells to pericytes/smooth muscle cells (SMC) is accompanied by VEGF expression, we used endothelial cell (EC) and mesenchymal cell cocultures to model cell-cell interactions that occur during vessel development. Coculture of EC and 10T1/2 cells, multipotent mesenchymal cells, led to induction of VEGF expression by 10T1/2 cells. Increased VEGF expression was dependent on contact between EC-10T1/2 and was mediated by transforming growth factorbeta (TGFbeta). A majority of VEGF produced in coculture was cell- and/or matrix-associated. Treatment of cells with high salt, protamine, heparin, or suramin released significant VEGF, suggesting that heparan sulfate proteoglycan might be sequestering some of the VEGF. Inhibition of VEGF in cocultures led to a 75% increase in EC apoptosis, indicating that EC survival in cocultures is dependent on 10T1/2-derived VEGF. VEGF gene expression in developing retinal vasculature was observed in pericytes contacting newly formed microvessels. Our observations indicate that differentiated pericytes produce VEGF that may act in a juxtacrine/paracrine manner as a survival and/or stabilizing factor for EC in microvessels.  相似文献   

18.
1003 is a multipotential embryonal carcinoma (EC) clonal cell line which can be induced to follow different developmental pathways by altering the composition of the culture medium. When grown in serum-containing medium the great majority of 1003 cells remain undifferentiated; they express the ECMA 7 cell-surface embryonic antigen and very low amounts of vimentin. In serum-free medium, most 1003 cells differentiate into neuroepithelial cells. The majority of these cells are still labelled with ECMA 7 antibodies. They contain higher amounts of vimentin than EC cells, but no neurofilament proteins. Neuroepithelial cells then differentiate into neurons through a stage of preneurons containing both vimentin and the 70-K neurofilament protein. Fully differentiated neurons contain 70-K neurofilament protein but no vimentin. The 200-K neurofilament protein is detected later in the neurons. Mesenchymal cells (induced by re-adding serum) express high amounts of vimentin organized in networks. Preneurons , neurons, and mesenchymal cells do not express ECMA 7 antigen.  相似文献   

19.
Epithelial–mesenchymal transition (EMT), via activation of Wnt signaling, is prevailing in embryogenesis, but postnatally it only occurs in pathological processes, such as in tissue fibrosis and tumor metastasis. Our prior studies led us to speculate that EMT might be involved in the loss of limbal epithelial stem cells in explant cultures. To examine this hypothesis, we successfully grew murine corneal/limbal epithelial progenitors by prolonging the culture time and by seeding at a low density in a serum‐free medium. Single cell‐derived clonal growth was accompanied by a gradient of Wnt signaling activity, from the center to the periphery, marked by a centrifugal loss of E‐cadherin and β‐catenin from intercellular junctions, coupled with nuclear translocation of β‐catenin and LEF‐1. Large‐colony‐forming efficiency at central location of colony was higher than peripheral location. Importantly, there was also progressive centrifugal differentiation, with positive K14 keratin expression and the loss of p63 and PCNA nuclear staining, and irreversible EMT, evidenced by cytoplasmic expression of α‐SMA and nuclear localization of S100A4; and by nuclear translocation of Smad4. Furthermore, cytoplasmic expression of α‐SMA was promoted by high‐density cultures and their conditioned media, which contained cell density‐dependent levels of TGF‐β1, TGF‐β2, GM‐CSF, and IL‐1α. Exogenous TGF‐β1 induced α‐SMA positive cells in a low‐density culture, while TGF‐β1 neutralizing antibody partially inhibited α‐SMA expression in a high‐density culture. Collectively, these results indicate that irreversible EMT emerges in the periphery of clonal expansion where differentiation and senescence of murine corneal/limbal epithelial progenitors occurs as a result of Smad‐mediated TGF‐β‐signaling. J. Cell. Physiol. 228: 225–234, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号