首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe an immunohistochemical technique that makes use of two monoclonal antibodies (MAb), one to detect the transforming growth factor B (TGFB) and another that reacts with iodo- and bromodeoxyuridine. The purpose of this technique is to determine the relationship between TGFB expression and the S-phase cells in human tumors. Since both can be distinctly identified in situ from tissue embedded in plastic, in assessment of the geographic orientation of S-phase cells in relation to such factors as TGFB, contiguity to blood vessels, nerve fibers, and macrophages can also be achieved.  相似文献   

2.
Sequential G- to R-banding for high resolution chromosome analysis   总被引:2,自引:0,他引:2  
Summary A sequential staining protocol for revealing first G-and then R-bands on early metaphase chromosomes is presented. Lymphocyte cultures are synchronized with methotrexate, and released from the S-phase block with bromodeoxyuridine. The resulting early metaphase cells are initially G-banded with Wright's stain and then R-banded by the fluorescence plus Giemsa (FPG) technique.  相似文献   

3.
The immunocytochemical detection by a monoclonal antibody of bromodeoxyuridine incorporated into S-phase cells allows the identification of proliferating cells. In this study we demonstrate that the labelling of embryo tissues is achieved by a single administration of BrdUrd to the mother after a 1 hour-labelling period. This simple and rapid technique facilitates the detection of proliferating cells within the embryo for the study of developing tissues and embryo cytokinetics.  相似文献   

4.
Summary A bromodeoxyuridine antibody staining technique (BAT) was applied for the analysis of human chromosomes of different chromosomal band resolution. For this purpose lymphocyte cultures were synchronized and labeled with bromodeoxyuridine during the second half of the S-phase. Generally BAT was found comparable to GTG banding though some prominent GTG bands and the constitutive heterochromatin exhibit less intense staining with this technique.  相似文献   

5.
Summary Immunocytochemistry of bromodeoxyuridine (BrdU) incorporated in DNA was performed on cryostat sections of rat liver and on isolated hepatocytes after partial hepatectomy using a two-step labeling technique. The method enabled the detection of S-phase nuclei in both tissue preparations. Quantification of the number of labeled nuclei in sections showed that the number of nuclei in S-phase increased from 0.3% in control liver to about 36% at 24 h after partial hepatectomy. The detection of BrdU in isolated hepatocytes showed the same labeling index of binuclear diploid, mononuclear tetraploid and binuclear tetraploid cells. A special role for mononuclear diploid cells in proliferation did not seem to occur.  相似文献   

6.
Immunocytochemistry of bromodeoxyuridine (BrdU) incorporated in DNA was performed on cryostat sections of rat liver and on isolated hepatocytes after partial hepatectomy using a two-step labeling technique. The method enabled the detection of S-phase nuclei in both tissue preparations. Quantification of the number of labeled nuclei in sections showed that the number of nuclei in S-phase increased from 0.3% in control liver to about 36% at 24 h after partial hepatectomy. The detection of BrdU in isolated hepatocytes showed the same labeling index of binuclear diploid, mononuclear tetraploid and binuclear tetraploid cells. A special role for mononuclear diploid cells in proliferation did not seem to occur.  相似文献   

7.
A Raza  K Ucar  H D Preisler 《Cytometry》1985,6(6):633-640
A monoclonal antibody against bromodeoxyuridine (BrdUrd) was produced, and a rapid slide technique (RPMB technique) was developed for the estimation of S-phase cells in a population using this antibody. Bone marrow cells from patients with acute nonlymphocytic leukemia (ANLL) were studied by both the RPMB technique and tritiated thymidine (3HdThd) labeling index studies. The percentage of S-phase cells obtained by each method was compared in 50 samples, and the correlation coefficient was r = 0.89. A "double label" method is also described in which cells were simultaneously incubated with either BrdUrd and 3HdThd or BrdUrd and tritiated cytosine arabinoside (3HAra-C). The samples were first processed by the RPMB technique and then by autoradiography. Results showed only black grains overlying the nuclei of fluorescent cells in each group. An automated microphotometer was used to quantitate grains and fluorescence from each cell. This demonstrated an almost direct relationship between grains and fluorescence from BrdUrd + 3HdThd slides, whereas different patterns of relationship were noted from BrdU + 3HAra-C slides of leukemic patients. Their implications are discussed in the text. Finally, intravenous infusions of BrdUrd was given to five leukemic patients. S-phase cells were recognized distinctly within 5 min of starting the infusion. The percentage of S-phase cells was almost identical from in vivo and in vitro samples. Various possibilities of studying the biological behavior of acute leukemias and analyzing cell cycle characteristics are discussed.  相似文献   

8.
We developed a double-label method to directly measure the rate at which cells enter S-phase of the cell cycle. All cells in S-phase were first labeled with a short pulse of [3H]-thymidine. This was followed by a longer incubation in bromodeoxyuridine (BrdU), a thymidine analogue. Nuclei labeled with [3H]-thymidine were detected by autoradiography and those labeled with BrdU by immunocytochemistry. Cells labeled only with BrdU must have entered S-phase at some time after the end of the [3H]-thymidine pulse. Thus, the rate of entry of cells into S-phase could be determined. This method was shown to be more accurate and more sensitive than determining changes in the rate at which cells entered S-phase with a continuous labeling protocol. It was possible to detect changes in proliferative activity that occurred in less than 1 hr. We used this double-label technique to study changes in the cell cycle during the terminal differentiation of chicken embryo lens fiber cells. These studies revealed differences in the effects of several treatments known to stimulate fiber cell differentiation. They also demonstrated the presence in the embryonic eye of factors that stimulate and prevent lens cell proliferation and differentiation.  相似文献   

9.
A rapid and convenient method for estimating S-phase cells in a population was developed which detects bromodeoxyuridine (BrdU) incorporation into DNA by means of monoclonal anti-BrdU antibodies. This immunofluorescence technique (RPMB technique) was compared to autoradiographic (ARG) detection of tritiated thymidine (3HTdr) grains incorporated into the DNA. Using incubation periods for BrdU and 3HTdr ranging from one minute to one hour and detecting their incorporation by ARG and RPMB techniques, it became apparent that the RPMB technique was far more sensitive than ARG in addition to being extremely easy to perform. Some possible utilities of the RPMB technique are discussed.  相似文献   

10.
Identified, proliferating S-phase cells in the postembryonic fish ear are known to be the precursors to new hair cells. It is not known, however, whether the ability to proliferate is restricted to a small population of cells. The ability of cells that are not normally in the cell cycle to enter S-phase was examined using the antimitotic drug cytosine arabinoside (ara-C). The normal population of S-phase cells in the saccule was destroyed by a single large dose of ara-C. Two weeks later, the prsence of S-phase cells was evaluated using the S-phase marker bromodeoxyuridine. The results strikingly demonstrate that S-phase cells are replaced, since S-phase cells returned to the saccule in the same number as found in normal fish. The data are interpreted to suggest that a large number of nonsensory support cells are capable of entering the cell cycle and that some mechanism must regulate which of these are actually cycling at any given time. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The bromodeoxyuridine (BrdU) incorporation technique for immunocytochemical labeling of S-phase nuclei was optimized for the study of chromaffin cell proliferation. Sequential fixation in ethanol followed by paraformaldehyde, and the use of DNAse to render incorporated BrdU accessible to antibody, permitted permanent double staining for BrdU and tyrosine hydroxylase. The efficacy of the technique was demonstrated in microcultures of dissociated neonatal rat adrenal glands, in which chromaffin cells exhibited proliferative responses to nerve growth factor and fibroblast growth factor similar to those previously demonstrated by autoradiography. Growth factor responsiveness was observed in both serum-containing and serum-free medium.  相似文献   

12.
Thin viable slices of normal or pathological human tissues were incubated in vitro with bromodeoxyuridine (BrdU). Later, cryostatic sections and histological sections from the same samples embedded in paraffin were examined by an immunohistochemical method using a monoclonal antibody anti-bromodeoxyuridine (anti-BrdU-MAb): on both cryostatic and histological sections, the nuclei of the S-phase cells proved positive. The optimization of the technique depends on the concentration of bromodeoxyuridine in the culture medium (160 microM), the duration of incubation (not less than two h), the method of DNA denaturation (2N or 4N HCl) and the dilution of the anti-BrdU-MAb (1:50). In vitro, immunohistochemical application of the BrdU/anti-BrdU-MAb method permits a quantitative assessment of the proliferative activity of a tissue as well as the direct location of the actively replicating cells in histological sections.  相似文献   

13.
S-phase cells in intact animals of the coelenterate species Eirene viridula, Hydractinia echinata, Hydra attenuata, and Hydra magnipapillata incorporate the thymidine analogue bromodeoxyuridine (BrdU) into newly synthesized DNA. BrdU-labelled nuclei divide and cells appear to undergo normal differentiation. Whole-mount preparations and macerated tissues were screened for S-phase cells by means of immunocytochemical detection of BrdU (Gratzner, 1982). It is demonstrated that spatial patterns of DNA replication can be evaluated easily. Cell lineages and pathways of cell migration could be traced.  相似文献   

14.
Vogel  Walther  Speit  Günter 《Human genetics》1986,72(1):63-67
Summary In normal diploid fibroblasts of the mouse, 3T3-, SV-3T3-, and Meth A-cells, the chromosome replication patterns were studied by a bromodeoxyuridine (BrdU)-labelling technique. SV-3T3 is a subline of 3T3 transformed by SV 40 and Meth A is a permanent cell line from Balb c transformed by methylcholanthrene. The use of 1 h thymidine pulses permits high resolution of the S-phase after partial synchronization of the cells at G1/S in an otherwise BrdU-substituted S-phase. It could be shown that the autosomal heterochromatin of the mouse (Mus musculus) starts replication during the early S-phase (R-band replication), continues while R-band chromatin finishes, and still replicates when G-band chromatin starts. The heterochromatin finishes before the majority of G-bands have been replicated. There is no fundamental difference in the course of chromosome replication between the different cell lines studied here. It is concluded that there are no obligate changes in the course of the S-phase linked to the process of transformation.  相似文献   

15.
This report describes a rapid and sensitive procedure for detection of cytosine arabinoside- (Ara-C) resistant mouse leukemia cells (L1210) in a predominantly Ara-C-sensitive population. L1210 cell lines sensitive or resistant to Ara-C were grown and treated with Ara-C in vitro or in vivo. Ara-C-resistant cells were detected as those cells with S-phase DNA content retaining the ability to incorporate bromodeoxyuridine (BrdUrd) after treatment with Ara-C. The BrdUrd incorporation ability of the S-phase cells was assessed by simultaneous flow cytometric measurement of cellular DNA content and amount of incorporated BrdUrd. The proportion of Ara-C-resistant cells was accurately estimated at frequencies approaching 10(-3).  相似文献   

16.
Cell cycle kinetics of solid tumors in the past have been restricted to an in vitro labeling index (LI) measurement. Two thymidine analogues, bromodeoxyuridine (BrdU) and iododeoxyuridine (IUdR), can be used to label S-phase cells in vivo because they can be detected in situ by use of monoclonal antibodies (MAb) against BrdU (Br-3) or IUdR (3D9). Patients with a variety of solid tumors (lymphoma, brain, colon cancers) received sequential intravenous IUdR and BrdU. Tumor tissue removed at the end of infusion was embedded in plastic and treated with MAb Br-3 and 3D9 sequentially, using a modification of a previously described method. Clearly single and double labeled cells were visible, which enabled us to determine the duration of S-phase (Ts) and the total cell cycle time (Tc), in addition to the LI in these tumors. Detailed control experiments using tissue culture cell lines as well as bone marrow cells from leukemic patients are described, including the comparison of this double label technique with our previously described BrdU-tritiated thymidine technique. We conclude that the two methods are comparable and that the IUdR/BrdU method permits rapid and reliable cell cycle measurements in solid tumors.  相似文献   

17.
We describe a new monoclonal antibody (designated Bu20a) against bromodeoxyuridine (BrdU). This antibody was selected by screening against human tissues using the APAAP technique, and shows no crossreactivity with normal nuclei. It stains BrdU incorporated into the nuclei of a wide range of cell types, including human tonsil lymphoid cells, normal mouse tissues, and human tumors growing in nude mice. A double-labeling technique is described using this antibody in which cell smears or tissue sections are first labeled by an immunoperoxidase procedure for a cellular antigen (e.g., mouse or human histocompatibility class II antigen, T-lymphocyte antigen, keratin) and BrdU is then detected by indirect immunofluorescence. This procedure, which was applied to a variety of human and animal cells and tissues, is of wide potential value in analyzing the phenotype of S-phase cells and in co-localizing antigen expression and BrdU incorporation in tissue sections.  相似文献   

18.
Durations of S-phase (Ts) and total cell cycle times (Tc) were measured from the peripheral blood (PB) and bone marrow aspirates (BM) of five patients with acute nonlymphocytic leukemia (ANLL). Intravenous bromodeoxyuridine (BrdU) was used as the first label for S-phase cells and a monoclonal anti-BrdU antibody was used to detect the positive cells. Tritiated thymidine [( 3H]Tdr) was used as a second label in vitro, and the Ts was calculated by counting the number of cells labeled either by BrdU or by [3H]Tdr or by both. Our data demonstrate that the duration of S-phase in myeloblasts obtained from BM is quite similar to that of circulating leukemic cells. Finally, the most accurate assessment of percentage of myeloblasts actively engaged in DNA synthesis can be obtained only from bone marrow biopsies following in vivo labeling.  相似文献   

19.
Double labeling with iodo- and bromodeoxyuridine for cell kinetics studies   总被引:1,自引:0,他引:1  
The rate of progression through the cell cycle was determined in five human glioma cell lines by a new sequential immunohistochemical staining technique. The cells were labeled first with iododeoxyuridine (IdUrd) for 1-3 hr and then with bromodeoxyuridine (BrdUrd) for 30 min. Labeled cells were identified with Br-3, a monoclonal antibody that recognizes only BrdUrd, and with IU-4, an antibody that recognizes both IdUrd and BrdUrd. Each slide was stained sequentially, first with the immunoperoxidase method for Br-3 and then with the alkaline phosphatase-anti-alkaline phosphatase method for IU-4. Cells that were positive only for IU-4 represented the fraction of S-phase cells that passed into the G2 phase during the period of incubation with IdUrd. The rates of progression measured by this method were constant in each cell line and resulted in smaller standard errors than were obtained by measurements from specimens stained singly for IdUrd and BrdUrd in different slides. The duration of the S-phase calculated from this fraction in the five cell lines ranged from 8-13 hr; the estimated potential doubling times were 25-32 hr and were very similar to the actual doubling times.  相似文献   

20.
The DNA synthesis time (Ts) and other related cell cycle parameters were roughly estimated in HeLa cells labeled with bromodeoxyuridine (BrdUrd) for various durations by using the flow cytometrical technique. The labeling indices increased in proportion to time after addition of BrdUrd. The Ts can be calculated from the slope of the regression line obtained by plotting the serial labeling indices against the labeling time and was equivalent to the value determined by fraction labeled cells in mid S-phase (FLSm) method. These parameters would be determined by only two samples labeled for different times. This simple method using BrdUrd provides rough but rapid estimation of Ts and other cell cycle parameters without complicated mathematical procedures, in addition to cell cycle partition of cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号