首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The [14C]-labeled monoazido analog of ethidium, 3-amino-8-azido-5-ethyl-6-phenylphenanthridinium chloride, when mixed with yeast cells and photolyzed, produced covalent adducts with both nuclear and mitochondrial DNA via the light-generated nitrene. The binding efficiency was about 12 times higher in mitochondrial than nuclear DNA. Moreover, the parent ethidium bromide at a 5-fold excess was an effective competitor for the binding of the monoazide analog with mitochondrial DNA, but not with nuclear DNA.  相似文献   

2.
Ethidium binding sites on plasmid DNA determined by photoaffinity labeling   总被引:1,自引:0,他引:1  
Photoaffinity labeling of pBR322 with ethidium monoazide (8-azido-3-amino-5-ethyl-6-phenylphenanthridinium chloride) was used to provide evidence for the sequence specificity of ethidium binding to native DNA. DNA-drug interactions were examined at concentrations of eight covalently bound ethidium drugs per molecule of pBR322 (4363 base pairs). Restriction enzyme cutting was blocked by the covalent binding of a drug molecule at (or near) the enzyme recognition sequence. This phenomenon was observed with all restriction enzymes tested and was not limited to specific regions of the pBR322 molecule. Double-digestion experiments indicated that a drug molecule may bind 2 to 3 base pairs outside the recognition sequence and still block restriction enzyme digestion. Intact plasmid was treated with [3H]ethidium monoazide and digested with restriction enzymes. The amount of covalently-linked ethidium analog was quantitated for different restriction fragments and the G-C content of each fragment was determined from the DNA sequence. In approximately half of the fragments the drug appeared to preferentially bind at a G-C base pair. However, no preference for specific sequences such as 5'-C-G-3' was detected, as had been suggested by previous modeling studies with ethidium bromide. The other fragments were located in specific map regions of the plasmid and did not bind drug with a strict dependence on GC content suggesting that binding specificity may depend on more than one structural feature of the DNA.  相似文献   

3.
The photoreactive analogs of ethidium bromide (ethidium mono- and diazide) have been developed as drug probes to determine the actual molecular details of ethidium bromide interactions with DNA. In an effort to demonstrate that the analogs in fact mimic the parent ethidium, competition experiments were designed using 3H thymidine-labeled DNA in intact Salmonella TA1538, which is reverted by the azide analogs. 14C-labeled ethidium azide analogs were used in combination with the non-labeled ethidium bromide. The results presented here demonstrate that the parent ethidium competes with the azide analogs as a DNA intercalating drug using CsCl density gradient ultracentrifugation.  相似文献   

4.
To identify the in vivo targets of the trypanocide, ethidium bromide, the fluorescent staining of T. brucei was examined for a series of ethidium analogs using fluorescence microscopy. Determination of the biological targets for most drugs is limited by the reversible nature of their interactions. To overcome this limitation, photoaffinity (azido) analogs of ethidium, which are capable of covalent attachment with photoactivation, were used to identify the ethidium binding sites within the parasites. Two of these compounds, when covalently attached, demonstrated an enhancement of fluorescent staining and were selective for the kinetoplast at low drug concentrations. These compounds were also those found previously to have the highest trypanocidal activity. Propidium, a phenanthridinium analog identical to ethidium except for a larger, more ionic substitution at R5, showed more nonspecific binding as determined by its general staining of the cytoplasm.  相似文献   

5.
Petite induction of ethidium analogs was examined in both resting and growing yeast cells. All of the analogs used in these experiments were active in dividing cells of Saccharomyces cerevisiae; only the parent ethidium bromide was mutagenic under resting conditions. Incorporation of adenine into mitochondrial DNA appeared to be prevented completely by ethidium and partially inhibited by other analogs. Treatment of growing cells with analogs affected fragmentation of pre-existing DNA as seen by the loss of a mitochondrial antibiotic resistance marker. The rates of elimination of the marker were different; ethidium generated greater loss than the monoamino analogs (3-amino and 8-amino-); and the deaminated analog was least effective. However, in resting yeast the marker was partially eliminated only with treatment of the parent ethidium. The degradation of the mitochondrial DNA by exposure to ethidium compounds was confirmed by agarose gel electrophoresis. Electrophoretic patterns of the mitochondrial DNA treated with each of the analogs under growing conditions and only with ethidium under resting conditions showed degradation of the mitochondrial DNA.  相似文献   

6.
P L Gilbert  D E Graves  J B Chaires 《Biochemistry》1991,30(45):10925-10931
The effects of covalent modification of poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) by ethidium monoazide (a photoreactive analogue of ethidium) on the salt-induced B to Z transition are examined. Earlier studies have shown ethidium monoazide to bind DNA (in the absence of light) in a manner identical to that of the parent ethidium bromide. Photolysis of the ethidium monoazide-DNA complex with visible light results in the covalent attachment of the photoreactive analogue to the DNA. This ability to form a covalent adduct was utilized to probe the effects of an intercalating irreversibly bound adduct on the salt-induced B to Z transition of the poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) polynucleotides. In the absence of drug, the salt-induced transition from the B to Z structure occurs in a highly cooperative manner. In contrast, this cooperativity is diminished as the concentration of covalently attached drug is increased. The degree of inhibition of the B to Z transition is quantitated as a function of the concentration of covalently attached drug. At a concentration of one drug bound per four base pairs for poly(dGdC).poly(dGdC) and seven base pairs for poly(dGm5dC).poly(dGm5dC), total inhibition of this transition is achieved. Lower concentrations of bound drug were effective in the partial inhibition of this transition. The effects of the covalently bound intercalator on the energetics of the B to Z transition were determined and demonstrated that the adduct is effective in locking the alternating copolymer in a right-handed conformation under high salt conditions.  相似文献   

7.
The azide analog of [14C]ethidium bromide was mixed with lymphocytes and photolyzed with visible light. The distribution of azide in the chromatin fraction was found to be 55% in DNA, 28% in protein and 16% in RNA. Label in the DNA portion was found to be almost exclusively in the region digestible with micrococcal nuclease. The parent compound, ethidium bromide, competed with azide for binding sites, illustrating that the azide analog mimics the action of ethidium bromide.  相似文献   

8.
The development of photoaffinity probes to characterize the binding process and subsequent biological activity of a drug has recently been emphasized by the synthesis of two ethidium azide analogs. The initial findings showed that one of the azido analogs, the 8-azido-3-amino derivative, was at least 40-fold more mutagenic and toxic in Salmonella tester strain TA1538 than the other analog, the 3,8-diazido derivative. These observations suggested the need to examine the structural requirements of ethidium photoaffinity labels for frameshift mutagenic activity in Salmonella. Thus, the isomer of the monoazide, the 3-azido-8-amino derivative, and two deaminated monoazide derivatives were synthesized and all of the ethidium analogs were screened in two Salmonella frameshift tester strains, TA1537 and TA1538, and in their excision-repair positive isogenic strains. The results presented in this paper demonstrate that two substituents are needed to produce significant mutagenicity and toxicity by the compound. One substituent, usually the amino group, is required for mutagenic activity, perhaps by orienting the phenanthridinium ring into its mutagenic configuration. The other substituent, the azido group, is required for covalent attachment, a requisite for mutagenic activity.Thus, photoaffinity labeling has provided a means of comparing structure with mutagenic activity for ethidium compounds.  相似文献   

9.
The 14C-labeled photosensitive monoazide analog of ethidium, 3-amino-8-azido-5-ethyl-6-phenylphenanthridinium chloride, produced covalent adducts in yeast cells with both nuclear and mitochondrial DNA on photolysis by visible light. With subsequent cultivation in nutrient medium, drug molecules on mitochondrial DNA were removed only through extensive mitochondrial DNA degradation. In contrast, drug attached to nuclear DNA was eliminated with conservation of DNA, presumably through a repair process.  相似文献   

10.
UV laser irradiation has been used to covalently crosslink histones to DNA in nuclei, chromatin and core particles and the presence of the different histone species in the covalently linked material was detected immunochemically. When nuclei were irradiated and then trypsinized to cleave the N- and C- terminal histone tails, no histones have been found covalently linked to DNA. This finding shows that UV laser-induced crosslinking of histones to DNA is accomplished via the non-structured domains only. This unexpected way of crosslinking operated in chromatin, H1-depleted chromatin and core particles, i.e. independently of the chromatin structure. The efficiency of crosslinking, however, showed such a dependence: whilst the yield of crosslinks was similar in total and H1-depleted chromatin, in core particles the efficiency was 3-4 times lower for H2A, H2B and H4 and 10-12 times lower for H3. The decreased crosslinking efficiency, especially dramatic in the case of H3, is attributed to a reduced number of binding sites, and, respectively, is considered as a direct evidence for interaction of nonstructured tails of core histones with linker DNA.  相似文献   

11.
The calf thymus DNA (CT-DNA) and poly(dI-dC).poly(dI-dC) binding properties of the natural antitumor antibiotic CC-1065 and selected analogs of CC-1065 were studied by circular dichroism (CD) and absorbance methods. The results indicate that the intense long wavelength DNA-induced CD band of these molecules originates from a chiral electronic transition which is delocalized over the whole molecule. Both the covalently bound species (N-3 adenine adduct) and the reversibly bound species exhibit the characteristic spectral behavior of an inherently dissymmetric chromophore when these agents bind within the minor groove of B-form DNA. This mechanism of optical activity accounts for why CC-1065 shows a weak CD in buffer but a very intense induced CD at long wavelength when bound to DNA, why the intensity of the induced CD of CC-1065 analogs depends upon how many fused ring systems the analog contains, and why covalently bound analogs having the mirror image configuration of the natural configuration also exhibit an intense positive induced CD band at long wavelength.  相似文献   

12.
Ethidium azide analogs (3-amino-8-azido-ethidium monoazide and ethidium diazide) have been developed as photosensitive probes in order to analyze directly the reversible in vivo interactions of ethidium bromide. Our preliminary observations [11], relating the mutagenic potential of the monoazide analog of ethidium, have been extended and refined, using the highly purified ethidium azide analogs [5]. A number of physical-chemical studies indicate that the monoazide analog interaction with nucleic acids, prior to photolysis, resembles remarkably the interaction of the parent ethidium (unpublished). It was anticipated, therefore, that competition by ethidium for the ethidium monoazide mutagenic sites in Salmonella TA1538 would be observed when these drugs were used in combination. Previous results in fact showed a decreased production of frameshift mutants when ethidium bromide was added to the ethidium monoazide in the Ames assay [1]. However, more extensive investigations, reported here, have shown that this apparent competition was the result of neglecting the toxic effects of ethidium monoazide and its enhanced toxocity in the presence of ethidium bromide. Conversely, an enhancement of the azide mutagenesis and toxicity for both the mono- and diazide analogs was seen when ethidium bromide was used in combination with these analogs.  相似文献   

13.
Photolabile 2'-deoxy- E -5-[4-(3-trifluoromethyl-3 H-diazirin-3-yl)styryl]uridine and its protected phosphoramidite derivatives have been synthesized and introduced into DNA oligomers through solid-phase DNA synthesis. The (trifluoromethyldiazirinyl)stylyl moiety of this nucleoside was found to be sufficiently stable for automated DNA synthesis. In addition, this moiety was found to be stable at 60 degrees C in aqueous solution under the annealing conditions for duplex formation with complementary strands, since >95% of the photolabile nucleoside remained after heating for 1 h. The oligo(dT) 15mer analog bearing the photolabile residue was activated/decomposed by near-UV irradiation. In photoaffinity cross-linking experiments with recombinant rat DNA polymerasebeta, constituted from a 40 kDa polypeptide, using oligo(dT) 15mer analogs bearing the photolabile residue near the 3'-terminus, a covalently bound complex of 45 kDa was obtained in the presence of complementary templates. Thus it was demonstrated that our method for synthesis of photolabile oligodeoxyribonucleotides may be useful for studies of DNA-related enzymes and DNA binding proteins.  相似文献   

14.
In this study 3'-O-[3-(4-azido-2-nitrophenyl)propionyl]-ADP was used as a photoaffinity analog for nucleotide binding sites on nucleotide-depleted F1-ATPase. Catalytic and binding properties of the labeled enzyme were investigated. The analog behaves as a competitive inhibitor in the dark (Ki = 50 microM). Photoirradiation of F1 in the presence of the analog leads to inactivation depending linearly on the incorporation of label. Complete inactivation is achieved at a stoichiometry of 3 mol/mol F1. The label is distributed between alpha and beta subunits in a ratio of 30%:70%. Although three sites were blocked covalently by photolabeling, three reversible sites of much higher affinity than the labeled sites were preserved. Mild alkaline treatment of photoinactivated enzyme leads to almost complete reactivation which is due to hydrolysis of the 3'-ester bond and release of the ADP moiety from the covalently bound analog. The conclusions drawn are as follows. The total number of sites which can be simultaneously occupied by nucleotides on F1 is six. Adopting the finding [Grubmeyer, C. & Penefsky, H. S. (1981) J. Biol. Chem. 256, 3718-3727] that the high-affinity sites are the catalytic ones which can be covalently labeled by 3'-O-[5-azidonaphthoyl(1)]-ADP [Lübben, M., Lücken, U., Weber, J. & Sch?fer, G. (1984) Eur. J. Biochem. 143, 483-490], it appears likely that azidonitrophenylpropionyl-ADP is a specific photolabel for the lower-affinity sites on nucleotide-depleted F1. This means that both types of sites can be differentiated by specific photoaffinity analogs. The labeled low-affinity sites interact with the catalytic sites, abolishing enzyme turnover, when steadily occupied by ADP kept in place by the covalently linking residue, which by itself has no inhibitory effect on the enzyme.  相似文献   

15.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

16.
Two mouse monoclonal IgM antibodies have been isolated which bind to histone 2B (H2B), as shown by protein blotting and immunostaining and by solid-phase radioimmunoassay (RIA). One of these (HBC-7) was specific for H2B by both techniques whereas the other (2F8) cross-reacted with histone H1 by RIA. Both antibodies failed to recognize H2B limit peptides from trypsin-digested chromatin and did not bind to Drosophila H2B, which differs extensively from vertebrate H2B only in the N-terminal region. These findings indicate that both antibodies recognize epitopes within the trypsin-sensitive, N-terminal region comprising residues 1-20. Binding of antibody HBC-7 was inhibited by in vitro ADP-ribosylation of H2B at glutamic acid residue 2. This strongly suggests that the epitope recognized by HBC-7 is located at the N-terminus of H2B, probably between residues 1 and 8. We have used solid-phase radioimmunoassay to investigate factors which influence the accessibility of this epitope in chromatin. Removal of H1 ('stripping') from high-molecular-mass chromatin had no effect on HBC-7 binding, nor was any difference observed between binding to stripped chromatin and to 146-base-pair (bp) core particles derived from it by nuclease digestion. These results suggest that accessibility of the N-terminal region of H2B is not influenced by H1 itself or by the size or conformation of linker DNA. In contrast, binding of antibody HBC-7 to 146-bp core particles derived from unstripped chromatin was reduced by up to 70%. Binding was restored by exposure of these core particles to the conditions used for stripping. Analysis of the protein content of core particle preparations from stripped and unstripped chromatin suggests that these findings may be attributable to redistribution of non-histone proteins during nuclease digestion. Pre-treatment of high-molecular-mass chromatin or 146-bp core particles with the intercalating dye ethidium bromide resulted in a severalfold increase in binding of HBC-7. The major changes in nucleosome morphology induced by ethidium are therefore accompanied by an increase in accessibility of the N-terminal region of H2B, possibly as a direct result of changes in the spatial relationship between H2B and core DNA.  相似文献   

17.
CC-1065 is a potent natural antitumor antibiotic that binds non-covalently and covalently (N-3 adenine adduct) in the minor groove of B-form DNA. Synthetic analogs of CC-1065 do not exhibit the delayed death toxicity of CC-1065 and are efficacious anticancer agents, some of them curative in murine tumor models. In an attempt to understand the different biological properties of CC-1065 and analogs, we have determined the following quantities for CC-1065, enantiomeric CC-1065, and three biologically active analogs and their enantiomers: the calf thymus DNA (CT-DNA) induced molar ellipticity of the adduct (or how rigidly the adduct is held in the right-hand conformation of the minor groove); the stability of the adduct with respect to long incubation times and to digestion by snake venom phosphodiesterase I (SVPD); the stabilizing effect on the CT-DNA helix of the covalently and non-covalently bound species with respect to thermal melting; and the CT-DNA binding/bonding (non-covalent/covalent) profiles at a low molar ratio of nucleotide to drug. The major observations from these studies are as follows: (i) molecules which show large DNA interaction parameters, stable adducts, and significant non-covalent binding exhibit delayed death toxicity; (ii) molecules which show intermediate DNA interaction parameters and stable adducts, but do not show significant non-covalent binding, do not exhibit delayed death toxicity and are biologically active; (iii) molecules which show small DNA interaction parameters and unstable DNA adducts are biologically inactive. The results suggest that a window exists in the affinity for the minor groove of DNA wherein an analog may possess the correct balance of toxicity and activity to make a useful anticancer agent. Outside of this window, the analog causes delayed deaths or has no significant biological activity.  相似文献   

18.
The antileukemic agent maytansine and certain synthetic carbinolamide analogs which also show antineoplastic activity rapidly alkylate nucleic acids in a reaction which is promoted by acidic conditions. Alkylation is evidenced by the heat-induced strand scission of alkylated covalently closed circular DNA detected by ethidium fluorescence assay. Alkylation of poly (d[14C]G) · poly(d[3H]C) by carbinolamide at 37°C is accompanied by neither depurination nor depyrimidation. The reaction of maytansine with DNA is interpreted as acid-induced dehydration of the carbinolamide moiety to an azomethie lactone and subsequent attack on this species by nucleophiles on the bases of DNA. The observed lack of reactivity and the low alkylating ability of two different analogs, both of which undergo dehydration very slowly, and a third analog, where loss of the alcohol is resisted, are in accord with this interpretation and the known loss of antileukemic activity of maytansine upon conversion to the 9-ether derivative. Certain carbinolamides at a concentration of 9 × 10−5 M have no effect on the rate of Escherichia coli DNA polymerase I catalyzed synthesis of duplex DNA on denatured calf thymus DNA template.  相似文献   

19.
J Liu  T C Wu    M Lichten 《The EMBO journal》1995,14(18):4599-4608
We have determined the precise location and structure of the double-strand DNA breaks (DSBs) formed during Saccharomyces cerevisiae meiosis. Breaks were examined at two recombination hot spots in both wild-type and rad50S mutant cells. At both loci, breaks occurred at multiple, irregularly spaced sites in a approximately 150 nucleotide interval contained within an area of nuclease-hypersensitive chromatin. No consensus sequence could be discerned at or around break sites. Patterns of cleavage observed on individual strands indicated that breaks initially form with a two nucleotide 5' overhang. Broken strands from rad50S mutant cells contained tightly bound protein at their 5' ends. We suggest that, in S.cerevisiae, meiotic recombination is initiated by a DSB-forming activity that creates a covalently linked protein-DNA intermediate.  相似文献   

20.
Frameshift mutations have been produced in specific repair-negative Salmonella tester strains by photoaffinity labeling technique using ethidium azide. Reversions requiring a +1 addition or a ?2 deletion were especially sensitive. Mutagenesis was reduced by the simultaneous addition of non-mutagenic ethidium bromide, and was prevented by photolysis of the azide prior to culture addition. Identical tester strains active in DNA excision repair were not mutagenized by the azide. These results are consistent with the interpretation that photolysis of the bound ethidium analog converts the drug from its noncovalent mode of binding (presumably intercalation) to a covalent complex with consequent production of frameshift mutations. Such photoaffinity labeling by drugs which bind to DNA not only confirms the importance of covalent drug attachment for frameshift mutagenesis, but also provides powerful techniques for studying the molecular details of a variety of genetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号