首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extrachromosomal ribosomal RNA genes in Tetrahymena: structure and evolution   总被引:21,自引:0,他引:21  
The macronuclear ribosomal RNA genes from a number of strains within several species of Tetrahymena have been characterized. Restriction enzyme analysis revealed that individual strains all contained entirely homogeneous populations of extrachromosomal palindromic ribosomal DNA, varying in molecular size from 12 × 106 to 14 × 106 in different strains. Considering that the evolutionary distance among some of the species is estimated to be of the order of 106 years, the rDNA from all the species exhibited a strikingly high similarity in the localization of their restriction sites. Nevertheless, differences both inside and outside the gene region were clearly detectable, showing that the rDNA sequences have diverged in all species.Genetic polymorphism with respect to rDNA structure exists in Tetrahymena, but seems to be rare. In only two out of five species examined (T. borealis and T. pigmentosa) interbreeding strains differing in rDNA structure were found. While the differences detected in the T. borealis rDNA were confined to a small size difference located at the non-coding ends of the molecule, several differences were detected in the rDNA from the T. pigmentosa strains. One of the differences was shown to be due to the presence of an intervening sequence within the structural gene for 26 S rRNA in some of the strains. An intervening sequence of similar size located at the same position within the 26 S gene region was found by R-loop mapping in all strains of the species T. thermophila. Restriction enzyme analysis indicates that the rDNA from two other species contains a similar intervening sequence, and we therefore suggest that the size and localization of the intervening sequence is evolutionarily stable. The two intervening sequences examined so far, however, are not identical, as revealed by restriction enzyme mapping.  相似文献   

2.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron? strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron? alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron? rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis. © 1992 Wiley-Liss, Inc.  相似文献   

3.
The extrachromosomal rDNA molecules from a number of Tetrahymena strains were characterized by restriction enzyme mapping using three different restriction enzymes combined with gel blotting and hybridization analysis. Strains from four out of six recently described species were found to contain an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number of T. pigmentosa strains showed this species to exhibit an unusual polymorphism with respect to its rDNA. It is suggested that recombinational cross-over events play a role in the formation of new rDNA alleles in this species.  相似文献   

4.
Two yeast strains, producing needle-shaped ascospores under suitable conditions, were isolated from grapes grown in Hungary. Based on these two strains, Metschnikowia viticola (type strain NCAIM Y.01705, CBS 9950, JCM 12561) is proposed as a new yeast species. Considering its phenotypic features, the restriction fragment patterns of 18S rDNA and the sequence of the D1/D2 domain of 26S rDNA, the proposed new species is closely related to Candida kofuensis.  相似文献   

5.
Ribosomal DNA repeat unit polymorphism in 49 Vicia species   总被引:1,自引:0,他引:1  
DNA restriction endonuclease fragment analysis was used to obtain new information on the genomic organization of Vicia ribosomal DNA (rDNA), more particularly among V. faba and its close relatives and the taxa within three (Narbonensis, Villosa, Sativa) species' complexes. Total genomic DNA of 90 accessions representing 49 Vicia species was restricted with 11 enzymes, and the restriction fragments were probed with three ribosomal clones. Twenty-eight repeat unit length classes were identified. The number of length classes (1–2) per accession did not correspond to the number of nucleolar organizing regions (NORs). The number of rRNA genes was independent of the 2C nuclear DNA amount present in the taxon. Each of the 90 accessions had 2 (rarely 1)-4 DraI sites. Those taxa with the same number of DraI sites generally could be distinguished from each other by different configurations. Probing of the DNA samples digested with tetranucleotide recognition restriction endonucleases emphasized differences between divergent spacer regions and enabled relative homologies between the coding regions to be established. Overall, rDNA restriction site variation among the species showed a good correlation with taxonomic classification. The rDNA analysis indicated evolutionary relatedness of the various taxa within the Narbonensis species complex. rDNA diversity within two other species complexes (Villosa, Sativa), on the other hand, was more extensive than expected. With few exceptions, data on the two complexes give evidence of taxon-specific divergences not seen with other approaches. The restriction site variability and repeat length heterogeneity in the rDNA repeat exhibited startling differences between V.faba and its close wild relatives included in the Narbonensis species complex. This analysis provides new evidence that none of the species within the complex can be considered to be putative allies of broad bean.  相似文献   

6.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

7.
Fifty-three strains of Saturn-spored yeasts were analyzed by means of restriction analysis of the amplified fragment of rDNA comprising the 5.8S rRNA gene and the internal transcribed spacers ITS1 and ITS2. The use of endonucleases HaeIII and MspI enabled clear differentiation of yeast species Williopsis mucosa, W. salicorniae, Zygowilliopsis californica, and Komagataea pratensis and the Williopsis sensu stricto complex. The minisatellite primer M13 was proposed for differentiation between sibling species of Williopsis sensu stricto, which have identical restriction profiles. PCR with primer M13 enabled reidentification of a number of collection strains, species identification of Saturn-spored isolates from the Far East, and detection of three strains affiliated to novel taxa. The latter have unique PCR profiles and differ in the nucleotide sequences of ITS1 and ITS2 fragments of rDNA. Possible variations in the results obtained with different molecular methods are discussed.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 768–776.Original Russian Text Copyright © 2004 by Naumova, Gazdiev, Naumov.  相似文献   

8.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

9.
The small phytoplankton genus Triparma belongs to the class Bolidophyceae and contains two distinct forms: silicified species and naked flagellated species (formerly Bolidomonas). Recent studies showed that four silicified species/strains (Triparma laevis f. inornata, T. laevis f. longispina, T. strigata, and T. aff. verrucosa) belong to a single clade that is paraphyletic, because it also contains an unclassified flagellated strain, and is sister to a flagellated species, T. eleuthera. In this study, we isolated and characterized two new strains of silicified species to test the phylogenetic unity of silicified bolidophytes. The isolates were identified as T. retinervis strains because they possessed fine areolation on the cell wall. 18S rDNA and rbcL phylogenetic analyses demonstrated that T. retinervis formed a new silicified clade that is sister to the flagellated species T. pacifica. This reveals that there are at least two distinct clades including both silicified and flagellated Triparma species.  相似文献   

10.
Tetranychus urticae is a polyphagous mite which is an important pest of citrus worldwide. This mite can be found feeding on many plant species occurring in the citrus agrosystem moving from weeds to trees. Because field samples consist of a mixture of different Tetranychidae species, as a first step necessary to further implement population characterisation of T. urticae, species‐discriminating criteria based on molecular techniques are needed. In this study, the nucleotide variation of the internal transcribed spacers (ITS) 1 and 2 and the intergenic 5.8S fragment of nuclear rDNA of T. urticae, Tetranychus turkestani, Tetranychus evansi, Tetranychus ludeni and Panonychus citri have been determined. Results demonstrate that for these species, the rDNA ITS2 regions are much more conserved than the corresponding rDNA ITS1. The high homogeneity of the ITS2 sequence observed among the specimens of T. urticae obtained from the same ecoregion makes this DNA sequence an excellent tool for species discrimination. ITS sequences differentiate not only species but also specimens from different geographical origin. Furthermore, polymerase chain reaction–restriction fragment length polymorphism analysis of the ITS2 proved adequate for a quick screening of high numbers of field samples.  相似文献   

11.
Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I–V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.  相似文献   

12.
Summary The organization of the ribosomal DNA (rDNA) repcat unit in the standard wild-type strain of Neurospora crassa, 74-OR23-1A, and in 30 other wild-type strains and wild-collected strains of N. crassa, N. tetrasperma, N. sitophila, N. intermedia, and N. discreta isolated from nature, was investigated by restriction enzyme digestion of genomic DNA, and probing of the Southern-blotted DNA fragments with specific cloned pieces of the rDNA unit from 74-OR23-1A. The size of the rDNA unit in 74-OR23-1A was shown to be 9.20 kilobase pairs (kb) from blotting data, and the average for all strains was 9.11+0.21 kb; standard error=0.038; coefficient of variation (C.V.)=2.34%. These data indicate that the rDNA repeat unit size has been highly conserved among the Neurospora strains investigated. However, while all strains have a conserved HindIII site near the 5 end of the 25 S rDNA coding sequence, a polymorphism in the number and/or position of HindIII sites in the nontranscribed spacer region was found between strains. The 74-OR23-1A strain has two HindIII sites in the spacer, while others have from 0 to at least 3. This restriction site polymorphism is strain-specific and not species-specific. It was confirmed for some strains by restriction analysis of clones containing most of the rDNA repeat unit. The current restriction map of the 74-OR23-1A rDNA repeat unit is presented.  相似文献   

13.
Chromosomes and Ti plasmids of 41 Agrobacterium strains, belonging to biovars 1, 2, 3, and Agrobacterium rubi species were characterized by the restriction fragment length polymorphism of PCR-amplified DNAs. Profiles that were obtained by the analysis of the amplified 16S rDNA confirmed the grouping of the strains according to their species. Higher polymorphism was detected in the intergenic spacer between the 16S rDNA and 23S rDNA genes, allowing efficient discrimination of strains. Identification of most strains was possible, and the genetic relatednesses of Agrobacterium strains could be estimated. The analysis of the plasmid Ti encoded regions between the tmr and nos genes, and the virA and virB2 genes, allowed fingerprinting of Ti plasmids. Genomic typing by the rapid PCR-RFLP method is thus shown to be useful for an independant identification of strains and of the conjugative Ti plasmids.Abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - IGS intergenic spacer Funded by Institut National de la Recherche Agronomique  相似文献   

14.
Heterogeneity of the internal transcribed spacer ITS1 of the rDNA within individuals ofTulipa gesneriana L.,T. kaufmanniana Regel, and their interspecific hybrids was analyzed by PCRRFLP, using the polymorphic restriction enzymesRsaI andHinfI, and by nucleotide sequence analysis. In most cases, the sum of the sizes of the restriction fragments was higher than the entire length of the undigested ITS fragment, indicating heterogeneity at the restriction sites within an individual. Differences in band intensities within the restriction patterns indicate the occurrence of variation in copy number of these different ITS1 variants within individuals. Automated sequencing without a visual inspection often failed to detect existing heterogeneity within sequences, resulting in a discrepancy between the sequencing and restriction analysis results. By visual interpretation of the sequences, the restriction patterns could mostly be predicted well. Fluorescence in situ hybridization (FISH) experiments in fourTulipa species revealed the occurrence of several rDNA spots. The number of rDNA loci varied from seven inT. gesneriana Christmas Marvel to ten inT. australis Link. This might explain the occurrence of heterogeneity in ITS sequences inTulipa, as homogenization of variants has to take place over different loci.  相似文献   

15.
In this study, we identified a total of 33 wine yeast species and strains using the restriction patterns generated from the region spanning the internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene. Polymerase chain reaction (PCR) products of this rDNA region showed a high length variation for the different species. The size of the PCR products and the restriction analyses with three restriction endonucleases (HinfI, CfoI, and HaeIII) yielded a specific restriction pattern for each species with the exception of the corresponding anamorph and teleomorph states, which presented identical patterns. This method was applied to analyze the diversity of wine yeast species during spontaneous wine fermentation. Received: 2 July 1997 / Accepted: 7 December 1997  相似文献   

16.
The taxonomy and evolutionary relationships of species in the genus Laminaria are poorly understood. Previous studies have demonstrated significant plasticity of morphological characters used to describe taxa, and interfertility has been reported among putative species. We analyzed nuclear ribosomal DNA (rDNA) sequence variation in eight species of Laminaria (L. agardhii Kjell., L. digitata (Huds.) Lamour., L. groenlandica Rosenv. [sensu Druehl 1968], L. longicruris De la Pyl., L. longipes Bory, L. saccharina (L.) Lamour., L. setchellii Silva, and L. yezoensis Miyabe) to elucidate evolutionary relationships in this genus. Restriction maps were constructed using a small subunit rDNA probe from Costaria costata (Turn.) Saunders, an rDNA repeat from the nematode Caenorhabditis elegans, and 11 hexameric restriction endonucleases in an annealing analysis of genomic DNA. Laminaria rDNA restriction maps were compared to each other and to that of the outgroup taxon, C. costata. rDNA restriction maps of Laminaria species and C. costata were similar. Restriction fragment length polymorphisms mapped to both the coding regions and the nontranscribed spacer of rDNA. Laminaria species were distinguished with this method. The restriction maps of L. agardhii, L. saccharina, and L. longicruris were identical, supporting a previous hypothesis that these species are conspecific. Comparison of restriction maps of Laminaria species suggested that the generic subdivision of Sections Simplices and Digitatae may be invalid.  相似文献   

17.
Riboprinting was used to determine the relationships among strains belonging to 15 species of the genusKluyveromyces. The small subunit ribosomal RNA gene (SSU rDNA) was amplified using the Polymerase Chain Reaction (PCR) and subjected to a battery of nine restriction enzymes. Similarity coefficients between strains were calculated based on shared and unique restriction fragments. Cluster analysis revealed three major groups that generally correlated with previously reported relationships based on other molecular data. Variations in SSU rDNA restriction fragments may be used for differentiation of theKluyveromyces strains included in this study.The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

18.
The genetic relationship among Tricholoma matsutake and T. nauseosum strains collected from various parts of the Northern Hemisphere was investigated using sequence analysis of the rDNA ITS region and PCR-RFLP analysis of the rDNA IGS-1 region. ITS sequence similarity between T. matsutake and T. nauseosum ranged between 98.1% and 100%. The strains of T. matsutake from coniferous forests and those from broad-leaved forests showed more than 99.8% similarity in their ITS sequences. Three distinct RFLP types were detected when IGS-1 regions were digested with Cfr13I. RFLP patterns showed no variability among the strains of T. nauseosum and those of T. matsutake from broad-leaved forests. This pattern corresponded to the dominant RFLP type in the Japanese population of T. matsutake. Thus, strains belonging to this RFLP type are widely distributed throughout East Asia and Europe and associated with many tree species of Pinaceae and Fagaceae. The result suggests that T. matsutake in coniferous and broad-leaved forests and T. nauseosum should be treated as the same species genetically.  相似文献   

19.
Restriction fragment length polymorphisms (RFLPs) in two regions of the ribosomal DNA (rDNA) repeat unit were examined in 33 strains representing 18 species ofSaprolegnia. The Polymerase Chain Reaction (PCR) was used to separately amplify the 18S rDNA and the region spanning the two internal transcribed spacers (ITS) and the 5.8S ribosomal RNA gene. Amplified products were subjected to a battery of restriction endonucleases to generate various fingerprints. The internal transcribed spacer region exhibited more variability than the 18S rDNA and yielded distinctive profiles for most of the species examined. Most of the species showing 100% similarity for the 18S rDNA could be distinguished by 5.8S + ITS restriction polymorphisms except forS. hypogyna, S. delica, S. lapponica, andS. mixta. The rDNA data indicate thatS. lapponica andS. mixta are conspecific withS. ferax, whereas there is no support for the proposed synonymies ofS. diclina withS. delica and ofS. mixta withS. monoica. Results from cluster analysis of the two data sets were very consistent and tree topologies were the same, regardless of the clustering method used. A further examination of multiple strains in theS. diclina-S. parasitica complex showed that restriction profiles are conserved across different strains ofS. parasitica originating from the U.K. and Japan.HhaI andBsaI restriction polymorphisms were observed in isolates from the U.S. and India. The endonucleaseBstUI was diagnostic forS. parasitica, generating identical fingerprints for all strains regardless of host and geographic origin. Except for the atypical strain ATCC 36144, restriction patterns were also largely conserved inS. diclina. Correlation of the rDNA data with morphological and ultrastructural features showed thatS. diclina andS. parasitica are not conspecific. Restriction polymorphisms in PCR-amplified rDNA provide a molecular basis for the classification ofSaprolegnia and will be useful for the identification of strains that fail to produce antheridia and oogonia.  相似文献   

20.
Four strains of ballistoconidium-forming yeast-like fungi (K-95, K-125, K-132 and K139), isolated from plants collected in Bangkok, Thailand, were assigned to the genus Tilletiopsis based on morphological and chemotaxonomical characteristics. On the basis of sequence data of 18S rDNA and the D1/D2 region of 26S rDNA, strains K-95, K-125 and K-132 were close to T. flava and T. fulvescens, and strain K-139 each formed related to T. minor. DNA-DNA reassociation experiments with related species revealed that strains K-125, K-132 and K-139 each formed a new and distinct species whereas strain K-95 was identified as T. flava. Tilletiopsis derxii Takashima et Nakase sp. nov. (JCM 10217T; K-125), Tilletiopsis oryzicola Takashima et Nakase sp. nov. (JCM 10218T; K-132), and Tilletiopsis penniseti Takashima et Nakase sp. nov. (JCM 10216T; K-139) are the names proposed for the new taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号