首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity in life-history traits is common. The relationship between phenotype and environment, or reaction norm, associated with life-history plasticity can evolve by natural selection if there is genetic variation within a population for the reaction norm and if the traits involved affect fitness. As with other traits, selection on plasticity in a particular trait or in response to a particular environmental factor may be constrained by trade-offs with other traits that affect fitness. In this paper, I experimentally evaluated broad-sense genetic variation in the reaction norms of age and size at metamorphosis in response to two environmental factors, food level and temperature. Differences among full-sib families in one or both traits were evident in all treatments. However, variation among families in their responses to each treatment (genotype-environment interaction) resulted in variation among treatments in estimated heritabilities and genetic correlations. Age at metamorphosis was equally sensitive to temperature in all families, but size at metamorphosis was more sensitive to temperature in some families than in others. Size at metamorphosis was equally sensitive to food level in all families, but age at metamorphosis was sensitive to food in some families but not in others. At high temperature or low food, the genetic correlation between age and size at metamorphosis was positive, generating a potential trade-off between metamorphosing early to attain higher larval survival and metamorphosing later to achieve larger size. This trade-off extends across treatments: families with the largest average size at metamorphosis achieved larger size with the longest average and greatest plasticity in age at metamorphosis. Other families achieved shorter average larval periods by exhibiting greater plasticity in size at metamorphosis but had the smallest average size at metamorphosis. This trade-off may reflect an underlying functional constraint on the ability to respond optimally to all environments, resulting in persistent genetic variation in reaction norms.  相似文献   

2.
3.
4.
The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full‐sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.  相似文献   

5.
6.
A genetically variable sensory mechanism provides phenotypic plasticity in the seasonal cycle of the Chrysoperla carnea species-complex of green lacewings. The mechanism functions as a switch during the pupal and early imaginal stages to determine aestival reproduction versus aestival dormancy, and it has two major components: (1) response to photoperiod and (2) response to a stimulus(i) associated with the prey of the larvae. Ultimately, the switch is based on the response to photoperiod—an all-or-nothing trait whose variation (long-day reproduction versus a short-day/long-day requirement for reproduction) is determined by alleles at two unlinked autosomal loci. In eastern North America, variation in this component of the switch differentiates two reproductively isolated “species” that are sympatric throughout the region: Chrysoperla carnea, in which both loci are homozygous for the dominant alleles that determine long-day, spring and summer reproduction and thus multivoltinism, and C. downesi, which has a very high incidence of the recessive alleles for the short-day/long-day requirement, and thus univoltine spring breeding. In contrast, geographical populations in western North America harbor variable amounts of within-and among-family genetic variation for the photoperiodic responses and also for the switch's second component—adult responsiveness to the prey of the larvae. The geographic pattern of genetic variation in the two components of the switch indicates that it is a highly integrated adaptation to environmental heterogeneity. Expression of among-family variation in the prey component of the switch is highly dependent on photoperiodic conditions and genotype (it requires a constant long daylength and the recessive short-day/long-day genotype). Thus, we infer that responsiveness to prey evolved as a modifier of the photoperiodic trait. The switch has a significant negative effect on a major determinant of fitness; it lengthens the preoviposition period in nondiapausing reproductives. This negative effect may result in temporal variation in the direction of selection, which helps maintain genetic variability in the switch mechanisms of western populations. Also, the photoperiodic and prey components of the switch are positively correlated with fecundity in nondiapausing reproductives; however, the strong influence of environmental factors—presence or absence of prey—leaves open the question whether the correlated effects on fecundity are expressed in nature.  相似文献   

7.
Cheilostome bryozoan species show long-term morphologic stasis, implying stabilizing selection sustained for millions of years, but nevertheless retain significant heritable variation in traits of skeletal morphology. The possible role of within-genotype (within-colony) phenotypic variability in preserving genetic diversity was analyzed using breeding data for two species of Stylopoma from sites along 110 km of the Caribbean coast of Panama. Variation among zooids within colonies accounts for nearly two-thirds of the phenotypic variance on average, increases with environmental heterogeneity, and includes significant genotype-environment interaction. Thus, within-colony variability apparently represents phenotypic plasticity, at least some of which is heritable, rather than random “developmental noise.” Almost all of the among-colonies component of phenotypic variance is accounted for by additive genetic differences in trait means, suggesting that within-colony plasticity includes virtually all of the environmental component of phenotypic variance in these populations of Stylopoma. Thus, heritable within-colony plasticity could play a significant part in maintaining genetic diversity in cheilostomes, but it is also possible that rates of polygenic mutation alone are sufficient to balance the effects of selection.  相似文献   

8.
Population differentiation for phenotypic plasticity of 12 morphological and reproductive traits was investigated in five populations of the Stellaria longipes complex including a population of the sand dune endemic S. arenicola. Population differentiation was detected for the mean (genotypic) value, amount of plasticity, and pattern of plasticity of traits. Average amount of plasticity was not related to degree of isozyme variability in the populations. Differentiation for pattern of plasticity was much more common than for amount. The direction and extent of divergence among populations was dependent on which of the three trait aspects was under consideration (mean, amount of plasticity, pattern of plasticity) and did not reflect their similarity as revealed by enzyme electrophoretic data. It was concluded that trait means, amounts of plasticity, and patterns of plasticity are independent of one another during evolutionary divergence and may be influenced by mosaic selection.  相似文献   

9.
Direct measurements of phenotypic selection by parasitoids on quantitative traits in herbivorous insects have been rare. I analysed episodes of phenotypic selection on the timing of life-history events in a multivoltine leafmining moth, Phyllonorycter mespilella, and assessed the importance of hymenopterous parasitoids as selective influences. Phyllonorycter mespilella has two consecutive stages of larval development, the sap-feeding (SF) and tissue-feeding (TF) stages. Adult parasitoids host feed predominantly on SF larvae, and oviposit predominantly on TF larvae. Oviposition attack on TF larvae caused positive directional selection on the date of transition to the the TF stage (TF date) in the third generation of P. mespilella in one population in 1991. Overwinter mortality caused negative directional selection on TF date in the third generation in a second population in 1993. No directional or variance selection on TF date was detected in the second population in the second generation of 1993. Parasitoid females accepted SF larvae for oviposition more often in the fall generation than in summer generations in both populations. The relative frequencies of SF and TF larvae may alter the pattern of oviposition attack by parasitoids, and thus the form of phenotypic selection on TF date.  相似文献   

10.
Studies of spatial variation in the environment have primarily focused on how genetic variation can be maintained. Many one-locus genetic models have addressed this issue, but, for several reasons, these models are not directly applicable to quantitative (polygenic) traits. One reason is that for continuously varying characters, the evolution of the mean phenotype expressed in different environments (the norm of reaction) is also of interest. Our quantitative genetic models describe the evolution of phenotypic response to the environment, also known as phenotypic plasticity (Gause, 1947), and illustrate how the norm of reaction (Schmalhausen, 1949) can be shaped by selection. These models utilize the statistical relationship which exists between genotype-environment interaction and genetic correlation to describe evolution of the mean phenotype under soft and hard selection in coarse-grained environments. Just as genetic correlations among characters within a single environment can constrain the response to simultaneous selection, so can a genetic correlation between states of a character which are expressed in two environments. Unless the genetic correlation across environments is ± 1, polygenic variation is exhausted, or there is a cost to plasticity, panmictic populations under a bivariate fitness function will eventually attain the optimum mean phenotype for a given character in each environment. However, very high positive or negative correlations can substantially slow the rate of evolution and may produce temporary maladaptation in one environment before the optimum joint phenotype is finally attained. Evolutionary trajectories under hard and soft selection can differ: in hard selection, the environments with the highest initial mean fitness contribute most individuals to the mating pool. In both hard and soft selection, evolution toward the optimum in a rare environment is much slower than it is in a common one. A subdivided population model reveals that migration restriction can facilitate local adaptation. However, unless there is no migration or one of the special cases discussed for panmictic populations holds, no geographical variation in the norm of reaction will be maintained at equilibrium. Implications of these results for the interpretation of spatial patterns of phenotypic variation in natural populations are discussed.  相似文献   

11.
Helix texta is endemic to the Mediterranean regions of Israel.It has a seasonal activity pattern which starts in the autumn,with the first rains, and dwindles towards the spring, whenthe snails dig into the ground for a six months long aestivation.A cold spell of 0°C will, however, terminate the activeseason of the adult snail, even in the middle of the rainy season.Survival of the young is very low and most of them (90%) donot survive their first year, because of the winter cold andthe summer drought. Massive predation of adult snails by wild boar was observedin December 1986: within a few days, about 50% of the adultsin the study in the area were eaten. A very rapid growth ofyoung and subadults was observed immediately after this predation.These observations suggest that the extent of recruitment ofnew adults to the population may be partly controlled by existingadults, through a growth-inhibiting pheromone in the mucus.After predation this inhibiting factor disappears, enablinga subsequent rapid growth of the young. In this manner, massive,irregular predation of the adults by a large predator, and changesin juvenile survival, result in sharp fluctuations in the agestructure of the population. The resulting pattern of unstablepopulation dynamics is different from that described for theEuropean species of Helix. (Received 16 January 1989; accepted 17 April 1989)  相似文献   

12.
13.
In a heterogeneous world, the optimal strategy for an individual is to continually change its phenotype to match the optimal type. However, in the real world, organisms do not behave in this fashion. One potential reason why is that phenotypic plasticity is costly. We measured production and maintenance costs of plasticity in the freshwater crustacean Daphnia pulex (Cladocera: Crustacea) in response to the presence of chemical signals from a predator, the insect Chaoborus americanus. We looked at three changes in juvenile body size and shape: body length, body depth, and tailspine length. Fitness costs were measured as changes in adult growth and fecundity, and summarized as the intrinsic rate of increase (r) for individuals reared in the presence or absence of Chaoborus extract. The cost of plasticity was measured as a multiple regression of mean clone fitness against trait and trait plasticity. We found scant evidence for either production or maintenance costs of plasticity. We also failed to find direct costs of these juvenile structures, which is surprising, as others have found such costs. We attribute the lack of measurable direct or plasticity costs to a decrease in metabolic rates in the presence of the Chaoborus extract. This decrease in metabolic rate may have compensated for any cost increases. We call for more extensive measures of the costs of plasticity, especially under natural conditions, and the incorporation of costs into evolutionary models.  相似文献   

14.
15.
A genetic model for the dynamics of a quantitative trait is analyzed in terms of gene frequencies, linkage disequilibria, and environmental effects on the trait. In a randomly mating population, at each generation progeny move to niches where they are subject to weak Gaussian selection on the trait, with different fitness levels in the different niches. Initially, the variability of the trait is due to additive loci with heterozygous homeostasis. The evolution of plasticity is then described in terms of the invasion of the population by genetic modifiers that may epistatically affect the trait, its optimum in each niche, the strengths of selection, and other parameters characteristic of the niches. We show that the evolution of trait means within niches depends on the overall evolution in the whole system, and in general, optimum phenotypic values are not attained. The reaction norm and genotype-environment interaction may evolve even if the only effects of the modifier are on individual rates of dispersal, or on fitness effects resulting from the different environments in the different niches; this evolution does not require that the modifier affect parameters that influence the values of the trait. It is conjectured that in the least frequently reached niches with low fitness levels, the deviations from the trait optima should be larger than those in more commonly experienced and less stringent niches. Our analysis makes explicit the different contribution of between- and within-niche effects on the evolutionary dynamics of phenotypic plasticity in heterogeneous environments.  相似文献   

16.
17.
Multiple clonal isolates from a geographic population of Alexandrium tamarense (M. Lebour) Balech from the North Sea exhibited high genotypic and phenotypic variation. Genetic heterogeneity was such that no clonal lineage was repeatedly sampled according to genotypic markers specified by amplified fragment length polymorphism (AFLP) and microsatellites. Subsampling of genotypic data from both markers showed that ordination of individuals by pair‐wise genetic dissimilarity indices was more reliable by AFLP (482 biallelic loci) than by microsatellites (18 loci). However, resulting patterns of pair‐wise genetic similarities from both markers were significantly correlated (Mantel test P < 0.005). The composition of neurotoxins associated with paralytic shellfish poisoning (PSP) was also highly diverse among these isolates and allowed clustering of toxin phenotypes based on prevalence of individual toxins. Correlation analysis of pair‐wise relatedness of individual clones according to PSP‐toxin profiles and both genotypic characters failed to yield close associations. The expression of allelochemical properties against the cryptophyte Rhodomonas salina (Wis?ouch) D. R. A. Hill et Wetherbee and the predatory dinoflagellate Oxyrrhis marina Dujard. manifested population‐wide variation of responses in the target species, from no visible effect to complete lysis of target cells. Whereas the high genotypic variation indicates high potential for adaptability of the population, we interpret the wide phenotypic variation as evidence for lack of strong selective pressure on respective phenotypic traits at the time the population was sampled. Population markers as applied here may elucidate the ecological significance of respective traits when followed under variable environmental conditions, thereby revealing how variation is maintained within populations.  相似文献   

18.
To investigate the microgeographic spatial structure of genetic variation for quantitative traits in a natural population of Impatiens capensis, we performed a common-garden greenhouse experiment. Seedlings were collected at 10-m intervals from a 40 times 40-m permanent grid in a natural population and grown to maturity in a greenhouse. From these parents, 3 self-fertilized seed families per grid point were then grown in a randomized design in the greenhouse and scored for a variety of morphological and life-history traits. Virtually all of the traits displayed significant variation among families, and many were significantly heterogeneous among grid points, indicating microgeographic genetic differentiation on a fine spatial scale. Overall morphological divergence, measured as Mahalanobis distances between grid points, increased with geographical distance. In general, spatial autocorrelation coefficients of grid point character means were positive at 11–20 m and negative beyond 40 m, although power for significance testing was low. The first factor in a principal component analysis of grid point means was positively loaded on height-related traits and negatively loaded on total reproduction at 50 days, accounting for 31% of the variation. This factor displayed significant positive spatial autocorrelation at 11–20 m and negative autocorrelation at >40 m. The remaining factors showed no detectable spatial structuring among grid points. These differences in spatial pattern among characters suggest that forces other than drift may have influenced the genetic structure of the population. There was no evidence for density-dependent selection; seedling density was not significantly correlated with the grid point mean of any trait.  相似文献   

19.
20.
克隆植物的表型可塑性与等级选择   总被引:15,自引:0,他引:15       下载免费PDF全文
表型可塑性是指生物个体生长发育过程中遭受不同环境条件作用时产生不同表型的能力。进化的发生有赖于自然选择对种群遗传可变性产生的效力以及各基因型的表型可塑性。有足够的证据说明表型可塑性的可遗传性,它实际上是进化改变的一个成分。一般通过优化模型、数量遗传模型和配子模型来研究表型可塑性的进化。植物的构型是相对固定的,并未完全抑制表型可塑性。克隆植物因其双构件性而具有更广泛的、具有重要生态适应意义的表型可塑性。构件性使克隆植物具有以分株为基本单位的等级结构,从而使克隆植物的表型选择也具有等级性。构件等级一般包含基株、克隆片段或分株系统以及分株3个典型水平。目前认为克隆植物的自然选择有两种模式,分别以等级选择模型和基因型选择模型表征。等级选择模型认为:不同的等级水平同时也是表型选择水平,环境对各水平具有作用,各水平之间也有相互作用,多重表型选择水平的净效应最终通过繁殖水平——分株传递到随后的世代中。基因型选择模型指出:克隆生长引起分株的遗传变异,并通过基株内分株间以及基株间的非随机交配引起种子库等位基因频率的改变,产生微进化。这两种选择模式均突出强调了分株水平在自然选择过程中的变异性以及在进化中的重要性,强调了克隆生长和种子繁殖对基株适合度的贡献。基因型选择模型包含等级选择模型的观点,是对等级选择模型的重要补充。克隆植物的表型可塑性表现在3个典型等级层次上,由于各层次对自然选择压力具有不同的反应,其表型变异程度一般表现出“分株层次>分株片段层次>基株层次”的等级性反应模式。很多证据表明,在构件有机体中构件具有最大的表型可塑性,植物的表型可塑性实际上是构件而非整个遗传个体的反应。这说明克隆植物的等级反应模式可能具有普适性。如果该反应模式同时还是构件等级中不同“个体”适应性可塑性反应的模式,那么可以预测:1)在克隆植物中,分株层次受到的自然选择强度也最大,并首先发生适应性可塑性变化,最终引起克隆植物微进化;2)由于较弱的有性繁殖能力,克隆植物在进化过程中的保守性可能大于非克隆植物。克隆植物等级反应模式的普适性亟待验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号