首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Previous accounts of the dentition of the Carboniferous dipnoan Uronemus have stressed the significance of the scattered small denticles. These, together with the marginal teeth and ridges, have been interpreted as primitive characters of the dipnoan dentition shared with three other genera: the Devonian Uranlophus and Griphognathus and the Carboniferous to Permian Conchopoma. Genera with tooth plates have been considered to be a monophyletic group in which tooth plates are a derived character; Uronemus has been excluded from this group in all previous investigations dealing with the significance of the dentition for determining relationships among dipnoans. The macromorphology of the dentition of Uronemus has been re-examined and correlated with the histology of all the dental tissues. Optical study of thin sections and scanning electron microscope study of the adjacent cut surfaces has shown that the hard, wear-resistant dentine of the teeth and ridges is petrodentine. The arrangement, growth, wear and histology of the dental tissues have been compared with those of denticulated and tooth-plated genera. The arrangement of new teeth relative to the tooth ridge, the pattern of wear along the ridge, and the type of dentine and its growth indicate that the dentition of Uronemus is best interpreted as a tooth plate with one long lingual tooth ridge and reduced lateral tooth rows. Therefore the marginal tooth ridges are not considered to be homologous with those of denticulate dipnoans such as Uranolophus. The presence of petrodentine, a tissue type only found in forms with tooth plates, is consistent with the view that the dentition is derived by modification of a radiate tooth plate. The denticles covering restricted regions of the palate and lower jaw are considered to have been a secondary acquisition. The suggestion that Conchopoma is a close relative of Uronemus is not accepted, and possible new relationships have been proposed. New data on Scaumenacia and Phaneropleuron, two other genera previously compared with Uronemus, are presented. Rhinodipterus, a form with elongate lingual ridges, is also discussed. Phaneropleuron is shown to have radiate tooth plates and not a marginal row of conical teeth as previously described. It is proposed that the tooth plate of Uronemus is derived from a dipterid type of plate. A discussion of some of the other factors involved in determining the relationships of the genus is given.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The histology of tooth plates of Sagenodus inaequalis has been investigated to obtain information on the histogenesis of the tissue. The histological mechanisms of growth and replacement of the tooth plate are described in terms of an increase in area of the tooth plate by addition of denticles to the lateral margins of the ridges, replacement of worn dentine at the tritoral surface by basal growth of dentine and invasive growth of dentine into the surrounding bone at the anterior and medial margins. The histogenesis of a specialized character for dipnoans is described, namely hypermineralized dentine, or petrodentine, within the tooth plates. This has placed an advanced character further back in the phylogenetic organization of dipnoans than was previously recognized. The implications of these observations are discussed in relation to proposed phylogenies and previous observations on tooth plates of other dipnoans. It is concluded that Sagenodus inaequalis shared a common ancestor with both the ceratondontids and the lepidosirenids. A sequence is proposed for the phyletic relationship of tooth plate-bearing dipnoans. From a consideration of the features of histogenesis of this specialized dentine, the alternative terminologies are reviewed and petrodentine (Lison 1941) chosen for the hypermineralized dentine and syndentine (Thomasset 1928) as the collective term for the entire mass of dentine in the tooth plate.  相似文献   

3.
To study the direction of jaw movements in the koala from wear facets on the molar teeth by scanning electron microscopy, gold coated epoxy resin replicas from the right maxillary and mandibular tooth quadrants were examined from 12 koala skulls. The progressive development and location of facets, the orientation of striae on them and directional data were recorded and transferred from electron micrographs to superimposable transparencies.
Polished facets with laterally oriented striations developed on the cristids and cristae progressively into dentine, where Greaves' effect indicated that the direction of the chewing stroke was labiolingual. Polished and pitted facets, aligned and striated in the parasagittal plane, occurred on the smooth interactive enamel surfaces of maxillary and mandibular cusps.
Labiolingual transit of the crislids over the cristae, with a slight anteromedial shift, was inferred to be the predominant chewing stroke on the working side with no contralateral balancing contact. A propalinal isognathous movement in which successive cusps made contact was also deduced.
Previous concepts of koala chewing and tooth wear were confirmed and amplified, and these may have application to studies of extinct marsupial jaw mechanisms.  相似文献   

4.
Abstract

Many types of wear facets can be found in mammalian teeth. Some are related to the initial surface, others use the cross-section of the enamel as the main tool. In primary occlusal surfaces facets mark the gradual wear, that are related to a relatively late ontogeny. Facets in teeth with secondary occlusal surfaces, however, represent specific arrangements of crests of enamel and dentine. Such facets require some initial wear to become fully functional. The tooth morphology guarantees such facets to be effective for a long period of time. Therefore they can be discriminated as specialized facets. From the different types of facets three specialized ones were selected, blade facets, rasp-facets, and nipper-facets, because they ate widely distributed, function differently, and are comparable with mechanical tools. They are long lasting and differ in the amount of exposed dentine. The amount of dentine is used to differentiate phases during late ontogeny, the part of the life history, when teeth are exposed to wear. Consequently the various types of facets can be related to different ontogenetic phases. The relevant phases are prolonged at the cost of other ontogenetic phases. Therefore, the various specialized wear facets represent heterochronies within the ontogeny of teeth.  相似文献   

5.
All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.  相似文献   

6.
7.
8.
Iharkutosuchus makadii is a basal eusuchian crocodylian with multicusped teeth discovered from the Upper Cretaceous of Hungary. Skull and dentition morphology indicates an active food processing for this crocodylian. First among crocodylians, a combination of different analyses, including cranial adductor muscle reconstruction, tooth wear pattern, and enamel microstructure studies, is applied here to support this hypothesis. Data provide unambiguous evidence for significant dental occlusion that was a result of a unique, transverse mandibular movement. Reconstruction of the jaw adductors demonstrates strong muscles responsible for slow but active jaw closure as the motor of transverse jaw movement; nevertheless muscles producing rapid jaw closure were reduced. Macrowear orientations show a dominantly transverse movement of the mandibles completed by a slight anteroposterior component. Along with quadrate morphology, macrowear further indicates that this motion was accomplished by alternate rotation of the mandibles about the quadrate condyles. Dental morphology and wear patterns suggest two types of power stroke: a slicing–crushing stroke associated dominantly with anterior tooth–food–tooth contact (with a low degree of transverse mandibular movement) during in the early stage of mastication, and a grinding stroke with significant posterior tooth–tooth contact and a dynamic transverse movement occurring later. The patterns of microwear show a diverse diet for Iharkutosuchus including both soft and hard items. This is also supported by the microstructure of the thick, wrinkled enamel built up mostly by poorly developed columnar units. Based on wear patterns, ontogenetic variation in feeding habits of Iharkutosuchus is also recognized. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Mammalian molars have undergone heavy scrutiny to determine correlates between morphology and diet. Here, the relationship between one aspect of occlusal morphology, tooth cusp radius of curvature (RoC), and two broad dietary categories, folivory and frugivory, is analyzed in apes. The author hypothesizes that there is a relationship between tooth cusp RoC and diet, and that folivores have sharper teeth than frugivores, and further test the correlation between tooth cusp RoC and tooth cusp size. Eight measures of tooth cusp RoC (two RoCs per cusp) were taken from 53 M2s from four species and subspecies of frugivorous apes (Pongo pygmaeus, Pan troglodytes troglodytes, Pan troglodytes schweinfurthii, and Gorilla gorilla gorilla) and two subspecies of folivorous apes (Gorilla beringei beringei, and Gorilla beringei graueri). Phylogenetically corrected ANOVAs were run on the full dataset and several subsets of the full dataset, revealing that, when buccolingual RoCs are taken into account, tooth cusp RoCs can successfully differentiate folivores and frugivores. PCAs revealed that folivores consistently had duller teeth than frugivores. In addition, a weak, statistically significant positive correlation exists between tooth cusp size and tooth cusp RoC. The author hypothesizes differences in tooth cusp RoC are correlated with wear rates, where, per vertical unit of wear, duller cusps will have a longer length of exposed enamel ridge than sharper cusps. More data need to be gathered to determine if the correlation between tooth cusp RoC and tooth cusp size holds true when small primates are considered. Am J Phys Anthropol 153:226–235, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Dental attrition, cranial suture closure, and epiphyseal union are compared as indicators of relative age in baboons, Papio cynocephalus (Linnaeus, 1776). Tooth destruction from wear is extreme. Such destruction is certainly a factor of vital importance to feral baboons and may limit life span. As cusps wear away, they form selenes of dentine and enamel which are effective grinding surfaces. In conditions of extreme wear, functional fourth molars may be quite beneficial. Vault sutures of females remain active longer than those of males. In contrast, most other cranial sutures and sites of epiphyseal activity mature earlier in the female than in males. Attrition scores in this sample are as useful as assessments of closure or epiphyseal union to determine the relative position of an individual in an age sequence. The most reliable estimates rely on all three sources.  相似文献   

11.
Maxillary and mandibular molars of the American opossum, Didelphis virginiana L., were viewed in the scanning electron microscope (SEM) after acid-etching or after cutting and acid-etching. Observations were made on enamel prism patterns as they relate to functional properties of the tooth at a particular site. Molars at different stages of wear were also observed under a dissecting microscope; worn surfaces were correlated with function and enamel ultrastructure. Pounding surfaces of molar cusps wear more rapidly than near-vertical shearing surfaces or crushing basins (i.e. the trigon and talonid basin). Pounding surfaces are subjected to abrasion by food and arc not normally involved in tooth-tooth contact. Near-vertical shearing surfaces and basins used for crushing do experience tooth-tooth contact, but are surprisingly more resistant to wear. Prisms at pounding sites approach the occlusal surface at a near 90° angle and are surrounded with very thick interprismatic (IP) enamel parallel to the occlusal surface of the tooth. The pounding pattern is present at tips of cusps and at occlusal surfaces of ridges of the tooth. At near-vertical shearing surfaces, the prisms approach the outer surface obliquely and are surrounded with IP crystals which are perpendicular to the vertical surface. The angle between prismatic and IP enamel in these patterns is 60–90° in a cervical to occlusal direction. In basins of the tooth used principally for crushing and some shearing, IP enamel is perpendicular to the changing slope of the basin and the prisms are usually at a 55–65° angle to the IP enamel. When the pounding and shearing-crushing patterns meet at a ridge, a distinct seam is observed. Pounding forces occur parallel to the long axis of the prisms and perpendicular to the thick IP enamel (i.e. perpendicular to the long axis of the IP crystals) lying on either side of the prisms. Shearing and crushing forces occur at an oblique angle to the prism, and interprismatic enamel is more evenly distributed about the prism. A spiral pattern is found at the bottoms of the trigon and talonid basins, but not at the bottom of the trigonid which is a non-occluding basin. It is concluded that the differential rates of wear of the enamel surfaces are necessary in maintaining the sharp cutting edges and effective crushing basins of the tribosphenic molar, and the ultrastructural arrangements of the enamel prisms are of functional significance.  相似文献   

12.
Cricodon metabolus is a trirachodontid cynodont from the Anisian (Middle Triassic) of eastern and southern Africa. It has labiolingually expanded (gomphodont) postcanines but also a sectorial tooth in the last postcanine locus. In this paper, we examine the crown microstructure of isolated sectorial and gomphodont postcanines belonging to the holotype specimen of this taxon using scanning electron microscopy. The enamel of both teeth is prismless and composed of discontinuous columnar divergence units, supporting the consistent presence of synapsid columnar enamel in cynognathians. Abundant tubules and numerous irregularly spaced incremental lines are also visible in the enamel and dentine layers in each tooth. This study reveals that the enamel thickness varies along the tooth row in Cricodon as the enamel layer of the gomphodont postcanines is 11.5 times thicker than that of the sectorial crown. It is likely that this difference reflects occlusal stresses and fewer replacements in gomphodont postcanines relative to sectorial teeth. Approximately 100 incremental growth lines of von Ebner are present in the dentine layer, indicating that the deposition of the dentine by odontoblasts occurred for three months before the animal's death.  相似文献   

13.
In Hemiphractus fang–like teeth are ankylosed to the premaxilla, maxilla and prevomer, and bony odontoids are found on the dentary, angular and palatine bones. The odontoids are small, but a larger pair at the front of the lower jaw project upwards and backwards into the mouth and fit into a diastema between the anterior premaxillary teeth when the mouth is closed.
The teeth are unipartite and monocuspid, and each consists of a strongly recurved and elongated cone of orthodentine, capped at the tip by a thin layer of enamel. The inner circumpulpal layer of the dentine is tubular, but no tubules are present in the outer pallial layer. During tooth development, dentine is formed before the enamel matrix is produced, and the tooth germs lie horizontally beneath the ventral surface of each dentigerous bone. On eruption, the tooth germs migrate horizontally and become ankylosed to the outer edge of the jaw bone by a layer of cellular cementum.
During tooth replacement, the vast majority of the dentine of each tooth, and the cementum at the tooth base, are resorbed by osteoclasts. It is not clear whether the tips of the teeth are shed or not.  相似文献   

14.
In the present study 38 unworn maxillary molars (M1 = 16, M2= 12, M3 = 10) of modern humans from a Slavic necropolis were sectioned through the mesial cusps in a plane perpendicular to the cervical margin of the crown. Five slightly worn M1s and one slightly worn M3 were also used thus increasing the total sample to 44, but measurements made on the worn areas were coded as missing values. Seven measurements of enamel thickness as well as the heights of the protocone and the paracone dentine horns were recorded in order to analyze whether changes in these dimensions in anteroposterior direction can be related to the helicoidal occlusal plane. Uni- and multivariate analyses revealed that the distribution of enamel thickness within and between maxillary molars corresponds to a helicoidal occlusal wear pattern. Enamel thickness along the occlusal basin increases from anterior to posterior, which may lead to rapid development of a reverse curve of Monson in first molars when compared to posterior teeth. However, although these overall differences together with the serial, especially delayed eruption pattern of human molars, contribute to the marked expression of the helicoidal occlusal plane in Homo, differences in enamel patterning between molars indicate that a helicoidal plane is a structural feature of the orofacial skeleton. In contrast to first upper molars, second and third molars show absolutely and relatively thicker enamel under the Phase I wear facet of the paracone, i. e., the lingual slope of the paracone, than under the Phase II facet of the protocone, i. e., the buccal slope of that cusp. These proportional differences are most pronounced in M3, as evidenced by uni- and multivariate statistics. It thus appears that the pattern of enamel thickness distribution from M1 to M3 follows a trend towards providing additional tooth material in areas that are under greater functional demands, that is, corresponding to a lingual slope of wear anteriorly and to a flat or even buccal one posteriorly. In addition, the heights of the dentine horns in anteroposterior direction change in a way that lends support to the hypothesis that the axial inclination of teeth could be one of the most important factors for the development of the helicoidal occlusal plane. Finally, the changes in morphology and enamel thickness distribution from first to third upper molars found in this study suggest that molars could be “specialized” in their function, i. e., from performing proportionally more shearing anteriorly to increased crushing and grinding activities posteriorly. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Functional implications of primate enamel thickness.   总被引:3,自引:0,他引:3  
Recent evolutionary interpretations of Hominoidea have postulated functional relationships between tooth form, diet and masticatory biomechanics. A major consideration is the durability of the tooth under certain dietary conditions. Teeth with low cusps and thicker enamel are able to withstand heavy mastication of abrasive food bolus for a longer period. When comparisons are made between species of higher primates the variables of tooth size, cusp morphology, and enamel thickness appear to be related but until now no systematic analysis has been made to determine the functional relevance of several dental dimensions. This study provides data gained from comparisons of dentition of nine species of primates. Histological sections were made of the post canine teeth and 21 dimensions were compared. The relevant dimensions identified serve to withstand dental wear. The distribution of thicker enamel corresponded to the observed wear planes. Humans had thicker enamel than pongids while the macaque had the thinnest. These preliminary results tend to support theories which explain low, thick, enameled cusps in hominids.  相似文献   

16.
Summary Sections of undemineralized tooth germs ofAmbystoma andTriturus were examined. The ultrastructure of early germs, both larval and adult, and of dentinogenesis, resembled that of mammals. In adult bicuspid teeth, once the dentine of the cusps was mineralized, mineral crystals of a similar size to early mammalian enamel crystals, appeared between the dentine and the inner dental epithelium (i.d.e). Concomitantly, the i.d.e showed features of mammalian secreting ameloblasts. This new layer, regarded as true enamel, lacked collagen, possessed an ordered arrangement of crystals and reached a maximum thickness of 6 m.In larval monocuspid teeth, once dentine mineralization had reached the plasma membranes of the i.d.e at the tip of the cusp, the i.d.e developed a ruffled border. At this stage the dentine of the tip, regarded as enameloid, was very hard and difficult to section. The ruffled border, characteristic of other cells which transport materials, was regarded as indicating that the i.d.e was removing organic matter from the enameloid. The differences in development between larval and adult teeth support the concept that there is a change in cellular activity of the i.d.e which occurs during metamorphosis from the larval to the adult urodele.  相似文献   

17.
The dentition of Cambaytherium was investigated in terms of dental wear, tooth replacement and enamel microstructure. The postcanine tooth row shows a significant wear gradient, with flattened premolars and anterior molars at a time when the last molars are only little worn. This wear gradient, which is more intensive in Cambaytherium thewissi than in Cambaytherium gracilis, and the resulting flattened occlusal surfaces, may indicate a preference for a durophagous diet. The tooth replacement (known only in C. thewissi) shows an early eruption of the permanent premolars. They are in function before the third molars are fully erupted. During the dominant phase I of the chewing cycle the jaw movement is very steep, almost orthal, with a slight mesiolingual direction and changes into a horizontal movement during phase II. The enamel microstructure shows Hunter-Schreger-bands (HSB) in the inner zone of the enamel. In some teeth the transverse orientation of the HSB is modified into a zig-zag pattern, possibly an additional indicator of a durophagous diet.  相似文献   

18.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

19.
Rockycampacanthus milesi n.gen., n.sp. is described from a single jaw from the Rocky Camp member of Lower Devonian Buchan Group, E Victoria. Rockycampacanthus differs from other ischnacanthiforms in having large multicuspidate teeth with dual rows of secondary cusps forming a posteromesial flange, a mesial tooth row beginning opposite the fourth cusp of the main tooth row, and in the gnathal bone being deepest in the anterior half. Taemasacanthus erroli n. gen., n. sp. is described from several jaw bones from the Lower Devonian Murrumbidgee Group, New South Wales. Taemasacanthus has a well developed posterolabial flange with secondary cusps developed, vertical rows of denticles on the cusps of the main tooth row and a well developed mesial tooth row separated from the main row by a prominent ridge. The labial face of the jaw has a circular ridge which may have supported labial cartilages. The complex mandibular joint in climatiforms, acanthodiiforms and some primitive sharks differs from the simple jaw articulation of ischnacanthids. It is suggested that ischnacanthids are the plesiomorphic sister group to climatiforms plus acanthodiiforms. The interrelationships of ischnacanthids, climatiforms and acanthodiforms are discussed.  相似文献   

20.
The dentino-enamel junction is critical throughout growth to mature crown configurations, being the interface between the papilla and the dental cap. Enamel deposition occurs relatively late and often causes changes from the pattern residing in the dentino-enamel junction. Primate teeth (mostly M1) have been stripped of enamel after measurement and mapping of the original crown. Relative growth, a variant of static adult (allomorphic) allometries, is assessed by displacement of enamel basal crown component landmarks from dentine homologues relative to tooth size. The hypothesis that differential enamel growth reflects evolutionary history is supported by the positive allometry and shape differences in enamel versus dentine landmarks among phyletically enlarged and dentally-reduced primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号