首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoglobulins are glycoproteins, containing N- linked carbohydrates in the heavy chain constant regions of all isotypes and O-linked carbohydrates in the hinge regions of human IgA1 and IgD. A previous study showed that IgD synthesized in the presence of tunicamycin and lacking the three N-linked glycans on the heavy chain was not secreted (Shin, S. U., Wei, D. F., Amin, A. R., Thorbecke, G. J., and Morrison, S. L. (1992) Hum. Antibodies 3, 65-74). The contribution of each of the carbohydrates in the Fc of IgD to assembly and secretion was now analyzed by eliminating the carbohydrate addition sequence, Asn-X-Ser/Thr, through site-directed mutagenesis. Only the carbohydrate nearest the sole disulfide bond between heavy chains, which remained high mannose and appeared to be buried within the folded molecule, was found to be essential for secretion. When IgD lacked that glycan, assembly reached only the heavy/light chain half-molecule stage, and heavy chains were held inside the endoplasmic reticulum. Using benzyl 2-acetamido-2-deoxy-alpha-d-galactopyranoside (BADG) to inhibit complete O-linked glycosylation, we found that IgA1 and IgD with incomplete hinge carbohydrates were assembled and secreted from cells. Thus, one N-linked glycan plays a structural role in IgD and is required for proper assembly and secretion, but the O-linked carbohydrates in the hinge of IgD and IgA1 are not required for folding and export.  相似文献   

2.
To investigate the molecular changes in cell-surface glycoproteins during chick embryo development, fibroblasts from 8- and 16-day embryos were extensively digested by pronase after (i) metabolic labeling with radioactive precursors and (ii) external labeling. Two main classes of glycopeptide pronase digestion product were distinguished by Sephadex G-50 column chromatography. The large material excluded was mostly composed of glycosaminoglycans. The small retarded glycopeptides underwent age-related modifications. Those in the 8-day cells were mainly N-linked, whereas 16-day cells contained both O- and N-linked glycopeptides. The evolution of high-mannose chains in younger cells to complex-type chains in the older cells is suggested by (i) the decrease in the mannose-to-galactose and mannose-to-N-acetylglucosamine ratio with embryo development, and (ii) the fact that endo-β-N-acetylglucosaminidase H treatment released more oligomannosyls from younger than from older embryo cell glycopeptides. Small glycopeptides were also more highly sialylated in 16-day cells than in 8-day cells. The present results provide the first biochemical evidence that both quantitative and qualitative modifications occur in cell-surface glycoconjugates during the late stages of chick embryo development.  相似文献   

3.
Two autologous human melanoma cell lines were studied to determine their capacities to bind wheat germ agglutinin (WGA). Both cell lines were derived from the same patient, the first, IGR 39, originated from the primary tumor, the second, IGR 37, was established from a metastatic lymph node. WGA binding sites on the surface of these cell lines were compared before and after sialidase and/or tunicamycin treatments. IGR 39 cells exhibited two classes of WGA binding sites with high and low affinities, whereas IGR 37 cells had only one class of high affinity binding sites. After tunicamycin treatment, the capacity of IGR 39 cells to bind WGA was markedly altered, since only one class of WGA binding sites with high affinity was observed under these conditions, whereas tunicamycin did not induce significant changes in the lectin binding of IGR 37 cells. The low affinity WGA binding sites, which were only found on IGR 39 cells, corresponded to sialyl residues present in N-linked glycoproteins. The high affinity binding sites present on both cell lines probably involved sialyl and N-acetyl-glucosaminyl residues associated with O-linked glycoproteins and/or glycolipids. No direct correlation could be drawn between the number of WGA binding sites and the overall sialic acid levels exposed to sialidase treatment. The 3-fold increase in the amount of cell surface glycopeptides obtained after pronase digestion and specifically binding to WGA-Sepharose was in good agreement with the overall higher number of WGA binding sites on IGR 39 compared to IGR 37 cells. Thus, subtle carbohydrate changes of cell surface glycoconjugates might account for the differences between the biological properties of human melanoma cell lines of low and high tumorigenicity.  相似文献   

4.
Specific glycan expression is an essential characteristic of developing tissues. Our molecular characterization of a mutation that abolishes neural-specific glycosylation in the Drosophila embryo demonstrates that cellular interactions influence glycan expression. The HRP epitope is an N-linked oligosaccharide expressed on a subset of neuronal glycoproteins. Embryos homozygous for the TM3 balancer chromosome lack neural HRP-epitope expression. Genetic and molecular mapping of the relevant locus reveals that Tollo/Toll-8, a member of the Toll-like receptor family, is altered on the TM3 chromosome. In wild-type embryos, Tollo/Toll-8 is expressed by ectodermal cells that surround differentiating neurons and precedes HRP-epitope appearance. Re-introduction of Tollo/Toll-8 into null embryos rescues neural-specific glycan expression. Thus, loss of an ectodermal cell surface protein alters glycosylation in juxtaposed differentiating neurons. The portfolio of expressed oligosaccharides in a cell reflects its identity and also influences its interactions with other cells and with pathogens. Therefore, the ability to induce specific glycan expression complements the previously identified developmental and innate immune functions of Toll-like receptors.  相似文献   

5.
Dolichol functions as a carrier of oligosaccharides to polypeptide chains in the biosynthesis of N-linked glycoproteins. It is here reported that a short (4 hours) transient exposure to tunicamycin, (a specific inhibitor of dolichol dependent glycosylation) causes a cell cycle delay in post-mitotic 3T3-cells. From kinetic point of view the delay following treatment by tunicamycin resembles the delay caused by short exposures to serum deprivation or treatment by cycloheximide, indicating that the expression of N-linked glycoproteins may be involved in the cell cycle regulation. Evidence is that the availability of dolichol may be a limiting factor in this process is also presented.  相似文献   

6.
The glucosidase inhibitors nojirimycin (NM) and 1-deoxynojirimycin (dNM) interfere with N-linked glycosylation. The effects of NM and dNM on the biosynthesis of secretory glycoproteins (IgD and IgM) and membrane glycoproteins (HLA-A, B, C and -DR antigens) have been examined. Whereas treatment of IgD- and IgM-producing cells with NM results in the transfer of drastically shortened oligosaccharide side chains, treatment with dNM inhibits trimming, most probably through interaction with glucosidase I and/or II. A comparison of NM and dNM with tunicamycin and the mannosidase inhibitor swainsonine (SW) show that each of the inhibitors interferes with N-linked glycosylation in a distinct manner. For both Ig and HLA antigens, the effects of SW are discernible at the final stages of glycan maturation only, whereas the effects of dNM are observed quite early in the biosynthetic process. The secretion of IgD, but not IgM, was blocked in dNM-treated cells. The HLA-A, B, C heavy chains synthesized by the Daudi cell line were degraded in an accelerated fashion in dNM-treated cells, but no effects were seen on the HLA-DR antigens in these cells. Although both SW and dNM interfere with trimming, further modifications of the oligosaccharide side chains occur, and show that the two processes are not obligately coupled. Glucosidase inhibitors such as NM and dNM, as well as the mannosidase inhibitor SW, allow modification of glycan structure, and may be used to study the biological role of glycoprotein oligosaccharides and their modifications.  相似文献   

7.
Important differences in asparagine-linked glycopeptides were observed in vitro cultured fibroblasts derived from chick embryo at different stages of development. Cells from 8-day and 16-day embryos were labeled metabolically with [3H]mannose. Cell surface glycopeptides obtained after mild trypsin treatment were extensively digested with pronase and then chromatographed on concanavalin-A-Sepharose and other immobilized lectins. The most important changes concerned the complex type chains. The ratio between triantennary plus tetraantennary and biantennary chains increased about 2.5-fold from the 8th to the 16th day of development. In the same way, complex chains with bisecting N-acetylglucosamine increased from 8-day to 16-day cells as shown by Phaseolus-vulgaris-erythroagglutinin--agarose chromatography. In 16-day cells, the majority of triantennary chains (60%) with alpha-linked mannose substituted at C2 and C6 positions and biantennary chains (50%) were shown to contain fucosyl (alpha 1----6)N-acetylglucosaminyl structure in the core region by their ability to bind to a lentil lectin affinity column. Similarly, in 8-day cells, triantennary chains (50%) were more fucosylated than biantennary chains (35%). Thus, complex structures exhibited an increased fucosylation of their invariable core from the 8th to the 16th day of development, except for fucosylated triantennary chains which were retained on Phaseolus vulgaris Leucoagglutin and on lentil lectin. These latter structures were present at the surface of 8-day cells and absent at the surface of 16-day cells. After chromatography on Bio-Gel P6 and treatment with endo-beta-N-acetylglucosaminidase H, the [3H]-mannose-labeled glycopeptides were separated by high resolution chromatography into glycopeptides with complex chains and glycopeptides with high-mannose chains. Analysis of the high-mannose oligosaccharides released after endo-beta-N-acetylglucosaminidase H treatment by chromatography on Bio-Gel P4 indicated that the same type of high-mannose chains were present at the surface of 8-day and 16-day cells. Quantification of mannose, galactose and sialic acid residues using gas liquid chromatography was consistent with a decrease of the relative amount of oligomannose chains and an increase of the relative amount of complex type chains in 16-day cells compared to 8-day cells. Thus N-linked oligosaccharides derived from cell surface glycoproteins undergo changes during embryo development resulting in greater complexity of carbohydrate chains.  相似文献   

8.
Eight d (8d) and 16d (16d) chick embryo fibroblasts (CEF) exhibited marked differences in their adhesive capacity on plastic support, but not on fibronectin substratum. This suggests differences in fibronectin (FN) expression and/or FN receptor expression. Both 8d and 16d CEF expressed an identical number of membrane receptors for FN with similar affinity. In contrast, the newly synthesized FN appeared de novo in 30 min in 8d CEF versus 60 min in 16d CEF. This difference is not due to a modification of the polypeptide chain biosynthetic rate. The FN synthesized in 8d CEF became insensitive to endo beta-N-acetyl-glucosaminidase H (endo H) treatment after 20 min, whereas it remained sensitive to endo H until 60 min in 16d CEF. Post-translational modifications of N-linked mannose-rich chains to complex type chain may account for the difference in the expression of cell surface FN and thus for the difference in cell adhesion capacity to plastic.  相似文献   

9.
Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.  相似文献   

10.
In sea stars, adhesion takes place at the level of a multitude of small appendages, the tube feet. It involves the secretion of an adhesive material which, after tube foot detachment, remains on the substratum as a footprint. It was previously reported that the two main organic components of this material are proteins and carbohydrates. The carbohydrate moiety of the adhesive secretion of Asterias rubens was investigated using a set of 16 lectins which were used on sections through tube feet, on footprints, and on the proteins extracted from these footprints. After gel electrophoresis, these proteins separate into eight protein bands which were named sea star footprint proteins (Sfps). Eleven lectins label the tube foot epidermis at the level of the adhesive cells, four react with footprints, and eight with two of the extracted footprint proteins, which are therefore classified as glycoproteins. Sfp-290 appears to bear mostly N-linked oligosaccharides and Sfp-210 principally O-linked oligosaccharides. The outer chains of both glycoproteins enclose galactose, N-acetylgalactosamine, fucose, and sialic acid residues. Another part of the carbohydrate fraction of the footprints would be in the form of larger molecules, such as sialylated proteoglycans. These two types of glycoconjugates are presumably key components of the sea star temporary adhesive providing both cohesive and adhesive contributions through electrostatic interactions by the polar and hydrogen-bonding functional groups of their glycan chains.  相似文献   

11.
The O-linked oligosaccharides on mature forms of herpes simplex virus type 1 (HSV1) glycoproteins were characterized, and were found to account largely for the lower electrophoretic mobilities of these forms relative to the mobilities of immature forms. Other posttranslational modifications of HSV1 glycoproteins (designated gB, gC, gD and gE) were related temporally to the discrete shifts in electrophoretic mobilities that signal acquisition of the O-linked oligosaccharides. Fatty acid acylation (principally of gE) could be detected just prior to the shifts, whereas conversion of high-mannosetype N-linked oligosaccharides to the complex type occurred coincident with the shifts. The addition of O-linked oligosaccharides did not occur in cells treated with the ionophore monensin or in a ricinresistant cell line defective in the processing of N-linked oligosaccharides. We conclude that extension of O-linked oligosaccharide chains on HSV1 glycoproteins, and probably also attachment of the first O-linked sugars, occurs as a late posttranslational modification in the Golgi apparatus.  相似文献   

12.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

13.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

14.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

15.
The requirement for intact carbohydrates of glycoproteins at the cell surface was investigated after treatment of lymphoma cells with compounds which interfere at different steps in N-linked glycosylation: swainsonine and 1-deoxynojirimycin act at different levels during the processing, so that complex oligosaccharides cannot be formed; 2-deoxyglucose, beta-hydroxynorvaline, and tunicamycin completely prevent the formation of N-linked (high-mannose as well as complex) oligosaccharides. The role of sialic acid was investigated by treating the cells with neuraminidase. These treatments resulted in altered patterns of surface-labelled glycoproteins after SDS-polyacrylamide gel electrophoresis. Blood-borne arrest of lymphoma cells in the spleen was sensitive to neuraminidase and to treatments interfering with the processing of complex N-linked oligosaccharides. It is suggested that carbohydrates are signals for cellular interactions involved in the recirculation and homing behaviour of lymphoid cells and probably interact with endogenous lectins at their site of homing.  相似文献   

16.
The oligosaccharides of microsomal beta-glucuronidase were analysed by gel permeation and weak anion exchange chromatography following hydrazine release. N-linked glycans, constituted 80% of the total glycan pool and were mainly of the tri- and biantennary complex type with or without core and arm fucose. The major oligosaccharide, that comprised 30.6% of all the species analysed, was structurally identified by reagent array analysis method and found to be a triantennary complex structure, Galbeta1,4GlcNAcbeta1,2Manalpha1,6(3)(Galbeta1,4GlcNAcbeta1,4(Galbeta1,4GlcNAcbeta1,2) Manalpha1,3(6))Manbeta1,4GlcNAcbeta1,4 GlcNAc. O-Linked glycans comprised 20% of the total glycan pool, the major species being Galbeta1,3GalNAc. All of the N- and O-linked glycans were charged. Most of the negative charge was due to sialic acid (85.0%) with the remainder being phosphate present as phosphomonoesters (7.3%) and phosphodiesters (5%). This is the first report of O-linked carbohydrate chains in microsomal beta-glucuronidase. The presence of O-linked glycans and branched N-linked glycans in a microsomal enzyme, in relation to the current view of glycosyltransferase compartmentalization in the Golgi is discussed.  相似文献   

17.
Zona pellucida (ZP), the extracellular glycocalyx that surrounds the mammalian egg plasma membrane, is a relatively simple structure consisting of three to four glycoproteins. In the mouse, the ZP is composed of three glycoproteins, namely ZP1 (200 kDa), ZP2 (120 kDa), and ZP3 (83 kDa). Extensive studies in this species have resulted in the identification of primary (mZP3) and secondary (mZP2) binding sites for spermatozoa. The two zona components are highly glycosylated containing N-linked and O-linked glycan units. In an attempt to characterize N-linked glycan units, mZP2 and mZP3 were purified and the N-linked carbohydrate chains were released by exhaustive digestion with N-glycanase. The released oligosaccharides (OSs) were radiolabeled by reduction with NaB3H4 and resolved by gel filtration on a column of Bio-Gel P-4. The OSs separated into several peaks indicating the presence of a variety of N-linked glycans. Interestingly, the radioactive peaks resolved from mZP2 and mZP3 were quite different, a result suggesting qualitative and quantitative differences in the glycans. The [SH]-labeled glycans present in mZP2 and mZP3 were pooled separately and fractionated by serial lectin chromatography. Experimental evidence included in this report strongly suggests that mZP3 (but not mZP2) contains polylactosaminyl glycan with terminal, nonreducing alpha-galactosyl residues. The mZP3 glycans eluted from the immobilized lectin columns were further characterized by lectin and sizing column chromatography before or after digestion with endo-/ exo-glycohydrolases. Data revealed the presence of a variety of OSs, including poly-N-acetyllactosaminyl, bi-, tri-, and tetraantennary complex-type, and high-mannose-type glycans. Taken together, these results provide additional evidence on the complex nature of the glycan chains present on mZP glycoconjugates.  相似文献   

18.
Varicella-zoster virus specifies the formation of several glycoproteins, including the preponderant gp98-gp62 glycoprotein complex in the outer membranes of virus-infected cells. These viral glycoproteins are recognized and precipitated by a previously described monoclonal antibody designated monoclone 3B3. When an immunoblot analysis was performed, only gp98 was reactive with monoclone 3B3 antibody; likewise, titration in the presence of increased concentrations of sodium dodecyl sulfate during antigen-antibody incubations caused selective precipitation of gp98 but not gp62. Further structural analyses of gp98 were performed by using the glycosidases endo-beta-N-acetylglucosaminidase H (endoglycosidase H) and neuraminidase and two inhibitors of glycosylation (tunicamycin and monensin). In addition to gp98, antibody 3B3 reacted with several intermediate products, including gp90, gp88, gp81, and a nonglycosylated polypeptide, p73. Since gp98 was completely resistant to digestion with endoglycosidase H, it contained only complex carbohydrate moieties; conversely, gp81 contained mainly high-mannose residues. Polypeptide p73 was immunodetected in the presence of tunicamycin and designated as a nascent recipient of N-linked sugars, whereas gp88 was considered to contain O-linked oligosaccharides because its synthesis was not affected by tunicamycin. The ionophore monensin inhibited production of mature gp98, but other intermediate forms, including gp90, were detected. Since the latter product was similar in molecular weight to the desialated form of gp98, one effect of monensin treatment of varicella-zoster virus-infected cells was to block the addition of N-acetylneuraminic acid. Monensin also blocked insertion of gp98 into the plasma membrane and, as determined by electron microscopy, inhibited envelopment of the nucleocapsid and its transport within the cytoplasm. On the basis of this study, we reached the following conclusions: the primary antibody 3B3-binding epitope is located on gp98, gp98 is a mature product of viral glycoprotein processing, gp98 contains both N-linked and O-linked oligosaccharide side chains, gp90 is the desialated penultimate form of gp98, gp88 is an O-linked intermediate of gp98, gp81 is the high-mannose intermediate of gp98, and p73 is the unglycosylated precursor of gp98.  相似文献   

19.
In a previous study we have shown that normal rat kidney (NRK) cells in vitro secrete a 69-kDa osteopontin in both phosphorylated (pp69) and nonphosphorylated (np69) forms. Only pp69 interacts with the cell surface and np69 forms a heat-dissociable complex with plasma fibronectin, suggesting functional modulation of osteopontin by phosphorylation. Using tunicamycin, an inhibitor of N-linked glycosylation, and peptide:N-glycosidase F, which removes N-linked oligosaccharide chains from glycoproteins, we show here that np69, but not pp69, contains N-linked carbohydrates. Our results also demonstrate that tunicamycin treatment does not inhibit the cell surface binding of pp69; however, np69 secreted by the treated cells fails to complex with plasma fibronectin, suggesting importantly, our data show that pp69 forms a heat-stable complex with cell surface fibronectin, suggesting that it is an integral component of the extracellular matrix of NRK cells. Finally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of deglycosylated and in vitro translated osteopontin suggests that the acidic nature of osteopontin as well as its post-translational modifications play a role in the anomalous behavior of osteopontin in sodium dodecyl sulfate gels, observed in several laboratories. The data presented here provide evidence for possible functional roles of 69-kDa osteopontin and suggest that its physiological properties are regulated by post-translational modifications.  相似文献   

20.
The human asialoglycoprotein receptor (ASGP-R) is a membrane glycoprotein of 46,000 Da which possesses two N-linked oligosaccharide chains (Schwartz, A. L., and Rup, D. (1983) J. Biol. Chem. 258, 11249-11255). In order to examine the role of N-linked oligosaccharides in the biosynthesis, intracellular routing, and function of the ASGP-R, we have used Hep G2 cells, which have a large number of ASGP-R, and two inhibitors of glycosylation, swainsonine and tunicamycin. In the presence of swainsonine, newly synthesized ASGP-R is a 43,000-Da species which is endoglycosidase H-sensitive, appears on the Hep G2 cell surface, and specifically binds 125I-asialoorosomucoid (ASOR). In the presence of tunicamycin newly synthesized ASGP-R is a 34,000-Da nonglycosylated species which appears on the Hep G2 cell surface where it specifically binds 125I-ASOR. There is no major effect on subsequent uptake and degradation of 125I-ASOR in cells whose ASGP-R was synthesized in the presence of tunicamycin. The turnover of ASGP-R synthesized in the presence of either swainsonine or tunicamycin is not significantly altered from that found for the normal 46,000-Da species. Thus, it appears that the two N-linked oligosaccharide chains of the human ASGP-R do not play a major role in the intracellular routing, turnover, or function of ASGP-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号