首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Chemical knockdown procedures were used to sample canopy arthropods at 3 month intervals over 1 year at two sites, one in eastern Australia and the other in western Australia. Samples were taken from narrow-leaved ironbark, Eucalyptus crebra, and grey box, Eucalyptus moluccana, in the east and from jarrah, Eucalyptus marginata, and marri, Eucalyptus calophylla, in the west. Arthropods were more abundant on trees in eastern Australia and exhibited different seasonal patterns from those in the west. Members of different functional groups exhibited different seasonal patterns, with some herbivorous groups responding to times of leaf production, decomposers and fungus feeders responding to high moisture availability, and predators/parasites responding to the abundance of food items. Seasonal variability was slightly higher in the west, possibly reflecting the greater seasonal amplitude in rainfall. In the eastern forest, proportionately more taxa peaked in spring or summer and declined to minimum numbers in winter. In the western forest several taxa attained peak numbers in autumn, winter or spring, while others declined to minimum values in winter or summer. The phenological patterns of canopy arthropods appear to be linked to the condition of the host plant and/or to climatic factors. Comparison of the western Australian data to those from a second year of sampling at a time when rainfall was greater and fell later into the season indicated that variability in arthropod numbers between years can be as great as that between seasons. Implications of the variability in seasonal and annual patterns of canopy invertebrate communities are discussed in relation to the need for long-term sampling and in relation to evaluating the impact of disturbance on forest communities.  相似文献   

2.
Capsule Arthropods are the most important diet component of Great Bustards Otis tarda in the first months of life.

Aims To determine the diet composition of young Great Bustards in Spain.

Methods The diet was estimated by stomach content analysis (n?=?49).

Results Stomach contents' dry weight consisted of 33% arthropods, 30% green plant material and 23% seeds. Gastroliths were only found in summer and autumn. The diet composition changed significantly between seasons. In summer, diet consisted mainly of arthropods (50%), with green plant material being the main component in winter (56%). Volume of stomach contents and mean size of ingested arthropods were higher in males than in females. Diet composition did not differ between sexes. In summer, ground-dwelling and plant-visiting arthropods such as Mantidae, Tenebrionidae and caterpillars were the most abundant. In winter, weeds, legumes and cultivated seeds were more frequent than arthropods. Cereal plants were the least consumed in all seasons, although Barley and Wheat seeds played an important role during winter and autumn.

Conclusion The results highlight the importance of arthropods and weeds as a fundamental component of the diet of young Great Bustards. Because previous studies show that arthropods and weeds are usually more abundant in extensive farming, we recommend the implementation of agri-environmental measures in Great Bustard breeding areas.  相似文献   

3.
Arthropods play a key role in the functioning of forest ecosystems and contribute to biological diversity. However, the influence of current silvicultural practices on arthropod communities is little known in jack pine (Pinus banksiana) forests, a forest type comprising a major portion of the Canadian boreal forest. In this study, the effects of silvicultural treatments on arthropod communities were compared to identify those treatments that minimize ecological impacts on arthropods. The influence of harvesting techniques and mechanical site preparations on insect family richness and abundance of arthropods (total, by orders and by trophic groups) was examined in young (three-year-old) jack pine plantations of northern Ontario. Each of the following treatments were conducted in three plots: (1) tree length harvest and trenching; (2) full tree harvest and trenching; (3) full tree harvest and blading; and (4) full tree harvest and no site preparation. Arthropods were collected using sweepnets and pitfall traps over two years. Blading significantly reduced insect family richness, the total abundance of arthropods, abundance of Orthoptera, Heteroptera, Hymenoptera, Diptera, insect larvae, and plant feeders when compared to the other treatments. The use of either full tree or tree length harvesting had similar short-term effects on family richness and the abundance of arthropods. Arthropod diversity declined with increasing post-harvest site disturbance. These results suggest that arthropod communities in the understory and on the ground are reduced most on sites mechanically prepared by blading, but are similar under conditions immediately following either full tree or tree length harvesting. The implications for regenerating jack pine in the boreal forest are discussed.  相似文献   

4.
Arthropods frequently use empty snail shells as shelter or nesting sites. This study analyses the use of shells from the arid-dwelling land snail Sphincterochila candidissima (Draparnaud 1801) by arthropods in the Sierra Elvira (south-eastern Spain). Arthropods of 11 different orders occupied 15.6% of shells. Salticidae (54.6%) and Apoidea (21.3%) comprised the majority of arthropods. Shells were used primarily when environmental temperatures were lowest, suggesting that, in the Sierra Elvira, arthropods use shells to escape from the cold. Weather explained 73% of the variation in shell occupation. However, Apoidea used shells independently of weather, occupying shells as nesting chambers. These results suggest that snail shells may be important refugia and nesting sites for arthropod fauna.  相似文献   

5.
The vegetation of Kings Park, near the centre of Perth, Western Australia, once had an overstorey of Eucalyptus marginata (jarrah) or Eucalyptus gomphocephala (tuart), and many trees still remain in the bushland parts of the Park. Avenues and roadsides have been planted with eastern Australian species, including Eucalyptus cladocalyx (sugar gum) and Eucalyptus botryoides (southern mahogany), both of which have become invasive. The present study examined the effect of a recent burn on the level of herbivory on these native and exotic eucalypts. Leaf damage, shoot extension and number of new leaves were measured on tagged shoots of saplings of each tree species in unburnt and burnt areas over an 8‐month period. Leaf macronutrient levels were quantified and the number of arthropods on saplings was measured at the end of the recording period by chemical knockdown. Leaf macronutrients were mostly higher in all four species in the burnt area, and this was associated with generally higher numbers of canopy arthropods and greater levels of leaf damage. It is suggested that the pulse of soil nutrients after the fire resulted in more nutrient‐rich foliage, which in turn was more palatable to arthropods. The resulting high levels of herbivory possibly led to reduced shoot extension of E. gomphocephala, E. botryoides and, to a lesser extent, E. cladocalyx. This acts as a negative feedback mechanism that lessens the tendency for lush, post‐fire regrowth to outcompete other species of plants. There was no consistent difference in the levels of the various types of leaf damage or of arthropods on the native and the exotic eucalypts, suggesting that freedom from herbivory is not contributing to the invasiveness of the two exotic species.  相似文献   

6.
Seasonality of relative population abundance in different groups of soil-surface arthropods was investigated monthly by pit-fall traps during a 2-year period in the grassland and tree-planted areas of a tropical semi-arid savanna at Warangal (south India). Densities of most groups were lowest during summer and highest during the rainy season. They were less abundant during winter. Arthropods were recorded in higher numbers in tree-planted compared to grassland areas. Certain arthropods that were found only during part of the year were recorded for a longer period in the tree-planted area. Formicidae,Monomorium indicum Forel,Crematogaster sp. andPachycondyla? tesserinoda (Emery), and Coleoptera,Pachycera sp. reached maximum densities in the rainy season and minimum numbers during winter and summer in the grassland area. However, these species had lower densities during the rainy season and reached maximum densities during winter and summer in the tree-planted area. The seasonal abundance of arthropods showed significant linear correlations with different abiotic environmental variables such as rainfall, soil moisture, organic matter, soil and air temperatures, soil pH, relative humidity at the soil surface, and potassium and phosphorus of surface soil. Soil moisture and rainfall were generally the strongest correlates with densities, particularly in the grassland area.  相似文献   

7.
The possibility that drought causes dieback of eucalypts in rural Australia was investigated. Water potential and canopy condition in dieback and healthy rural Eucalyptus blakelyi and E. melliodora trees were compared during and after an extreme drought in the ACT. All the trees were drought affected, but the extent was independent of the condition of their canopies at the beginning of the study.  相似文献   

8.
节肢动物是湿地生物多样性的重要组分,在维持湿地生态功能,指示湿地环境变化中发挥重要作用。在2020年7月对黑龙江三江国家级自然保护区沼泽湿地的23个采样点进行节肢动物样品采集,运用统计方法分析人类活动干扰对湿地节肢动物数量、群落组成、多样性的影响以及节肢动物对人类活动干扰的指示作用。共采集到节肢动物10目47科1825只,主要以双翅目和半翅目昆虫为主。自然湿地节肢动物的多度是干扰湿地的4.27倍;生物多样性指数在不同湿地类型之间存在一定差异,节肢动物的物种丰富度在自然湿地显著高于干扰湿地(P<0.05),而Pielou均匀度指数在干扰湿地显著高于自然湿地(P<0.05)。人类活动干扰对湿地节肢动物群落组成影响显著,聚类和非度量多纬尺度排序(NMDS)显示,两种湿地类型节肢动物群落结构相似性较低。指示值法分析显示,自然湿地的指示类群为叶甲科、蚁形甲科、叶蝉科、蚜科、盲蝽科、摇蚊科以及姬蜂总科,干扰湿地未发现指示类群。综上所述,湿地节肢动物对人类活动干扰响应十分敏感,可以作为指示湿地健康状况的关键生物类群。  相似文献   

9.
赵爽  宋博  侯笑云  丁圣彦  汤茜 《生态学报》2015,35(13):4398-4407
生物多样性是连接景观异质性与生态系统服务的桥梁。在区域尺度上,以指示类群代替地表节肢动物类群,可以有效的开展生物多样性的保护工作。但是,在黄河下游农业景观中,关于地表节肢动物指示类群的研究报道较少。以黄河下游农业景观中4种生境类型(农田、林地、树篱和沟渠)为研究样地,且在农田生境中划分不同尺度(尺度1,3.6 hm2、尺度2,14 hm2和尺度3,28 hm2),通过调查不同生境中地表节肢动物分布及其多样性,结合地表节肢动物优势类群的辨识,分析了优势类群和地表节肢动物多样性的相关性,确定了研究区内地表节肢动物多样性的指示类群。结果发现:研究区内地表节肢动物优势类群为膜翅目、鞘翅目和蜘蛛目。树篱和林地生境的地表节肢动物多样性指示类群是膜翅目,农田生境中地表节肢动物多样性指示类群是鞘翅目,沟渠生境中地表节肢动物多样性指示类群是蜘蛛目。农田生境中优势类群间无相关性(P0.05);林地、沟渠和树篱生境中鞘翅目与蜘蛛目之间存在显著正相关(P0.01);林地和沟渠生境中,鞘翅目与膜翅目之间存在正相关(P0.05)。在农田生境中优势类群之间的相关性存在尺度依赖性,随着空间尺度的增大,相关性有一定的增强。在尺度2和尺度3上膜翅目和鞘翅目均存在正相关(P0.05),并且随着尺度增加而呈上升趋势。研究表明,黄河下游农业景观中不同生境类型地表节肢动物多样性的指示类群差别较大,其中树篱和林地生境具有较高的相似性,而农田生境地表节肢动物优势类群相关性存在尺度依赖性。在黄河下游农业景观中,以优势类群多样性代替地表节肢动物类群的多样性,可以在条件不足、时间紧迫的情况下更加有效的开展生物多样性的保护工作。  相似文献   

10.
Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever‐like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft‐bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally‐preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft‐bodied stem‐arthropod Pambdelurion whittingtoni and the hard‐bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units.  相似文献   

11.
Abstract This study investigated the effect of three experimental fire regimes on the fecundity, ovule development and seedfall of two common wet-dry tropical savanna eucalypts, Eucalyptus minima and Eucalyptus tetrodonta, in northern Australia. Both species flower early in the dry season and ovule development occurs during the dry season. This coincides with a period of frequent fires. The three fire regimes considered were applied for four years between 1990 and 1994. These regimes were (i) Unburnt, (ii) Early, fires lit early in the dry season, and (iii) Late, fires lit late in the dry season. The treatments were applied to nine catchments (15–20 km2) with each fire regime replicated three times. Fire intensity typically increases as the dry season proceeds. Therefore, early dry season fires generally differ from late dry season fires in both their intensity and their timing in relation to the reproductive phenology of the eucalypts. Late dry season burning significantly reduced the fecundity of both species, whereas Early burning had no significant effect. Ovule success was significantly reduced by the Early burning for both species. The Late burning significantly reduced ovule success in E. tetrodonta, but not in E. miniata. The results suggest that fire intensity and fire timing may both be important determinants of seed supply. Fire intensity may be a determinant of fecundity, whereas fire timing in relation to the reproduction phenology may have a significant impact on ovule survival. Both fire regimes resulted in a substantial reduction in seed supply compared with the Unburnt treatment. This may have a significant impact on seedling regeneration of these tropical savanna eucalypts.  相似文献   

12.
The pattern of prey utilization of the orb-weaving spider Araneus pinguis was studies by comparing between arthropods restrained in the empty webs (spiders were removed) and those unattacked in the intact webs (spiders were not removed). The number of arthropods was larger in the empty webs than in the intact webs. In the empty webs, web area, mesh width, number of radii, and signal thread length were presumed to affect the number of arthropods left in a single web. As for the intact webs, web area, mesh width, and web-exposure time were important factors. In the empty webs, the density of arthropods decreased away from the hub. On the other hand, the density of unattacked arthropods in the intact webs was the same throughout the web. Arthropods in the empty webs were larger than those in the intact webs. The upper limit in size of unattacked arthropods increased along with the distance from the hub in the intact webs, but not in the empty webs. These results indicate increase in the minimum size of eaten arthropods increased in the former. This positive sizedistance relation may have resulted from the adaptive switching of spiders’ alternative foraging methods (i.e., the rapid attack at encounter and the later eating during web deconstruction) on the basis of the prey profitability.  相似文献   

13.
We conducted a night-time warming and drought field experiment for 7 years (1999–2005) in a Mediterranean shrubland. We focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree Pinus halepensis L. and the final years to study the effects of the experimental night-time warming and drought on Fv/Fm, photosynthesis, and stomatal conductance. Warming treatment increased mean air temperature and mean soil temperature through the years by an average of 0.7 and 0.9°C respectively, and drought treatment reduced soil moisture through the years by an average of 19%. Warming tended to increase photosynthetic rates in E. multiflora, G. alypum and P. halepensis mostly in the cold seasons, when plants were more limited by temperature, as shown by the lowest values of Fv/Fm being detected in winter in the three studied species. A negative effect of warming was only detected for E. multiflora in summer 2003. Drought treatment generated different responses of net photosynthetic rates depending on the species, season and year. Stomatal conductance showed the same pattern as photosynthesis for the three studied species, displaying seasonal and inter-annual variability, although with an overall negative effect of drought for P. halepensis. Photosynthetic rates decreased significantly in the dry winter 2005 and spring 2005 in comparison to the same seasons of 2003 and 2004. There were positive correlations between the photosynthetic rates in different seasons for E. multiflora, G. alypum and P. halepensis and the soil moisture of the week prior to measurements. The great variation in the photosynthetic rates was thus explained in a significant part by soil moisture levels. The lowest Fv/Fm values usually corresponded with lowest stomatal conductances suggesting that drought stress could be associated to stress by low temperatures in winter.  相似文献   

14.
Winter cold limits temperate plant performance, as does summer water stress in drought‐prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta‐analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought‐prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta‐analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought‐prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought‐prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.  相似文献   

15.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

16.
  1. Many organisms contribute to the decomposition of carrion. For arthropods, many studies focus on the necrophagous community, those directly consuming carrion.
  2. Necrophagous arthropods use carrion as a shelter or food source. Therefore, carrion generally increases the abundance and biodiversity of necrophagous species. However, it is unclear if carrion has similar effects on detrital communities.
  3. This study examines changes in community structure and composition of necrophilous and detrital communities over the course of decomposition.
  4. Five pig head carrion were placed at least 7 m apart under cages in temperate mixed forest. Leaf litter was sampled 0 m, 1.5 m, and 3 m from each carrion weekly during summer, and monthly during autumn, until the first frost. Arthropods were extracted from leaf litter by using Berlese funnels.
  5. At the carrion site, necrophagous insects increased in abundance, species richness, and Shannon diversity during decomposition, and all decreased after dry decay.
  6. Detritus arthropods displayed a sharp increase in abundance during advanced decay, decreasing during dry decay, and a general increase over time for species richness and diversity.
  7. In conclusion, carrion can influence the surrounding, non-necrophagous arthropod community, highlighting the need to investigate carrion effects beyond typical necrophagous species to have a more holistic understanding of carrion ecology.
  相似文献   

17.
 Radial growth responses to drought were examined in the tree-ring records of six species growing within two locations of differing land-use history and soil moisture characteristics, and in overstory and understory canopy positions in northern Virginia. Tree species experienced differential ring-width reductions during or immediately following four severe drought periods occurring from 1930 to 1965 and were influenced by climatic variables including annual and summer temperatures, annual precipitation, and annual Palmer Drought Severity Index. Relative growth comparisons averaged across species before and after drought years indicated that understory trees on dry-mesic sites grew 11% faster after drought compared to pre-drought rates while mesic site trees in both canopy positions grew approximately 4% slower. Superposed epoch analysis indicated that Liriodendron tulipifera growing on mesic sites experienced greater ring-width reductions associated with drought than co-occurring, more drought-tolerant Quercus alba and Q. velutina. On dry-mesic sites, L. tulipifera also experienced greatly reduced growth as a result of drought but exhibited significant growth increases following individual drought events. Quercus alba was the only species that exhibited a consistent, significant ring-width decrease associated with all droughts on dry-mesic sites. In contrast, Pinus virginiana was least impacted by drought on dry-mesic sites but was much more impacted by drought on mesic sites, indicating a drought×site interaction for this species. Overstory Carya glabra and Q. alba experienced larger growth decreases during drought on dry-mesic versus mesic sites. Understory tree growth reductions did not differ between site types but were often significantly larger than overstory responses of the same species on mesic sites. Following drought, most trees exhibited growth reductions lasting 2–3 years, although several species experienced reductions lasting up to 6 years. The results of this study suggest that tree rings represent an important long-term proxy for leaf-level ecophysiological measurements of growth responses to drought periods. Received: 31 July 1996 / Accepted: 16 April 1997  相似文献   

18.
Nonnative plants alter the composition of native plant communities, with concomitant effects on arthropods. However, plant invasions may not be the only disturbance affecting native communities, and multiple disturbances can have compounding effects. We assessed the effects of invasion and drought on plant and arthropod communities by comparing grasslands dominated by nonnative Old World bluestem grasses (OWBs, Dichanthium annulatum) to grasslands dominated by native plants during a period of decreasing drought severity (2011–2013). Native plant communities had more species of plants and arthropods (/m2) than areas dominated by OWBs during extreme drought, but richness was comparable as drought severity decreased. Abundance of arthropods was greater in native plant communities than in OWB communities during extreme drought, but OWB communities had more arthropods during moderate and non-drought conditions. We observed a shift in the arthropod community from one dominated by detritivores to one dominated by herbivores following plant invasion; the magnitude of this shift increased as drought severity decreased. Both plant communities were dominated by nonnative arthropods. A nonnative leafhopper (Balclutha rubrostriata) and native mites (Mochlozetidae) dominated OWB communities as drought severity decreased, and OWBs may serve as refugia for both taxa. Nonnative woodlice (Armadillidium vulgare) dominated native plant communities during extreme and non-drought conditions and abundance of this species may be associated with an increase in plant litter and available nutrients. Given the importance of arthropods for ecosystem services, incorporating arthropod data into conservation studies may demonstrate how changes in arthropod diversity alter ecosystem function where nonnative plants are dominant.  相似文献   

19.
Soil arthropods can provide ecosystem services, such as biological control of crop pests that spend part of their life cycle in the soil. This is the case of Bactrocera oleae (Rossi) (Diptera: Tephritidae), one of the most important pests of olives. The impact of edaphic arthropods on the abundance of B. oleae pupae was evaluated and their contribution for biological control of the pest was quantified. Exclusion and exposed boxes with B. oleae pupae were installed in olive groves in parallel with pitfall traps used for sampling arthropods and the percentage of pupae suppression was evaluated from January to May 2014. Forficulidae dominated the community during the winter period while Formicidae dominated in spring. Pupae suppression reached the maximum value in the beginning of spring and these results indicate that soil arthropods have strong impact in the decline of B. oleae pupae in olive groves.  相似文献   

20.
Crop rotation systems in organic and conventional farming systems differ in crop types, management and duration. However, changes in arthropod communities over the entire rotation system are poorly understood, as many studies have surveyed only single years or have not covered the entire rotation period. Here, we describe changes in arthropods in two contrasting systems at a split organic‐conventional farm: an 8‐year organically managed rotation with five crops and a 5‐year conventionally managed rotation with three crops. Arthropods were classified into three functional groups, representing epigeal predators, foliar predators/parasitoids and herbivores/pollinators. Epigeal predators were particularly reduced by soil tillage which occurred annually in the conventional rotation, but was intermittent in the organic. Arthropods were most abundant on the conventional rotation, but most taxonomically diverse on the organic. In the conventional system, all functional groups showed a cyclical change in their taxonomic composition that closely matched the crop rotation sequence, whereas in the organic rotation, the cycle was less clear. Whilst the current year's crop type was the major determinant of arthropod community composition, there was a significant “lag effect” for many taxa from the preceding year's crop. Our results suggest that both the amounts of soil tillage (e.g., in no‐till systems) and crop rotation order have major impacts on arthropods in agroecosystems. Rotations with excessive soil tillage are likely to reduce the abundance of some groups of beneficial arthropods, especially epigeal predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号