首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low-resolution three-dimensional structure of the crystalline innermost chorion layer (ICL) has been calculated from electron microscope images of tilted negatively stained crystals. The isolated ICL is a single layer, about 12 nm thick and appears to be made up of two types of subunits, each approximately 3 nm in diameter, arranged regularly as groups of four heterodimers in space group C222. Linking density between these groups of subunits, maintaining the integrity of the layer, appears to be confined mainly to the outer surfaces of the ICL.  相似文献   

2.
A low-resolution three-dimensional structure of the crystalline innermost chorionic layer (ICL) of the Hawaiian species Drosophila grimshawi and the Drosophila melanogaster eggshell mutant fs(1)384 has been calculated from electron microscope images of tilted negatively stained specimens. The isolated ICL of Drosophila grimshawi is a three-layer structure, about 36 nm thick, whereas the ICL of Drosophila melanogaster eggshell mutant fs(1)384 is a single layer, about 12 nm thick. Each unit in both crystalline structures includes octamers made up of four heterodimers. Crosslinks between the structural elements, both within and between unit cells form an interconnecting network, apparently important in maintaining the integrity of the layer. A model which may account for the ICL self-assembly formation in vivo and the ICL observed lattice polymorphism is proposed, combining data from the three-dimensional reconstruction work and secondary structure features of the ICL component proteins s36 and s38.  相似文献   

3.
Isocitrate lyase (ICL) and malate synthase (MS) of a psychrophilic marine bacterium, Colwellia maris, were purified to electrophoretically homogeneous state. The molecular mass of the ICL was found to be 240 kDa, composed of four identical subunits of 64.7 kDa. MS was a dimeric enzyme composed of 76.3 kDa subunits. N-Terminal amino acid sequences of the ICL and MS were analyzed. Purified ICL had its maximum activity at 20 degrees C and was rapidly inactivated at the temperatures above 30 degrees C, but the optimum temperature for the activity of MS was 45 degrees C. NaCl was found to protect ICL from heat inactivation above 30 degrees C, but the salt did not stabilize MS. Effects of temperatures on the kinetic parameters of both the enzymes were examined. The Km for the substrate (isocitrate) of ICL was decreased with decreasing temperature. On the other hand, the Km for the substrate (glyoxylate) of MS was increased with decreasing temperature. The calculated value of free energy of activation of ICL was on the same level as that of MS.  相似文献   

4.
Isocitrate lyase (ICL) and malate synthase (MS) of a psychrophilic marine bacterium, Colwellia maris, were purified to electrophoretically homogeneous state. The molecular mass of the ICL was found to be 240 kDa, composed of four identical subunits of 64.7 kDa. MS was a dimeric enzyme composed of 76.3 kDa subunits. N-Terminal amino acid sequences of the ICL and MS were analyzed. Purified ICL had its maximum activity at 20°C and was rapidly inactivated at the temperatures above 30°C, but the optimum temperature for the activity of MS was 45°C. NaCl was found to protect ICL from heat inactivation above 30°C, but the salt did not stabilize MS. Effects of temperatures on the kinetic parameters of both the enzymes were examined. The Km for the substrate (isocitrate) of ICL was decreased with decreasing temperature. On the other hand, the Km for the substrate (glyoxylate) of MS was increased with decreasing temperature. The calculated value of free energy of activation of ICL was on the same level as that of MS.  相似文献   

5.
The all‐solution‐processed switchable interconnecting layer (ICL) for both inverted and normal tandem organic solar cells (OSCs) is reported for the first time here. The fundamental challenges in the literature arise from mixing multiple functionalities into a single layer. For a widely used ICL composed of an electron transport layer (ETL)/a hole transport layer (HTL), ETL needs not only to efficiently extract electrons from an underneath photoactive layer, but also to fulfill optical, mechanical, chemical and electrical requirements to function as effective tunneling junction ICL with HTL atop. Taking on multiple functionalities for a single ETL makes ETL in ICL highly coupled and difficult to be replaced. This is also the case for HTL. Here, this study demonstrates an all‐solution‐processed switchable ICL, ETL/recombination layer (RL)/HTL and HTL/RL/ETL, for both normal and inverted tandem OSCs. In switchable ICL, ETL and HTL simply serve as carrier transport layers as they did in single OSCs. Electrical recombination, mechanical protection and chemical separation functionalities are realized by RL alone. This strategy shifts the views of ICL for tandem OSCs from conventionally complicated ETL/HTL tunneling junction ICL, where both ETL and HTL play several different roles, towards simplified ICL where ETL and HTL play a distinct decoupled role, advancing ICL for more adaptable tandem OSCs.  相似文献   

6.
Eggshell formation in Drosophila melanogaster is used as a model system in studies of cellular differentiation. A detailed knowledge of eggshell structure is necessary for this purpose and also to permit correlation of eggshell structure with function. Unique among the eggshell layers, the innermost chorionic layer (ICL) was investigated by means of transmission electron microscopy of thin sections and whole mounts, utilizing conventional fixation. LaNO3 impregnation and negative staining with uranyl acetate. Whole mount face views of negatively stained ICLs were processed by means of optical and computer reconstruction. The ICL, which almost fully covers the oocyte, consists of 4 5 bilaminar sublayers with a total thickness of 400–500 Å. It appears to be formed by crystallites 1– μm in size, containing roughtly spherical molecules which are 30 Å in diameter approximately. Each unit cell probably includes 8 molecules and also distinct vacant spaces, differing in size, ICL may be involved in the exchange of the respiratory gases during embryogenesis.  相似文献   

7.
8.
9.
Cell walls of Clostridium thermohydrosulfuricum and C. thermosaccharolyticum have a two-layered structure, consisting of a thin, lysozyme-sensitive murein layer and a surface (S) layer composed of hexagonally or tetragonally arranged subunits. The subunits can be removed from the murein layer by treatment of cell wall preparations, are composed of a fragile, pH-sensitive monolayer of macromolecular subunits. In both organisms the first stage of the cell division process involves only the plasma membrane and the murein layer. During the subsequent cell separation, a surplus of S-layer subunits appears at the site of division, and consequently the newly formed cell poles remain completely covered by the s layer throughout the separation process. In autolyzed cells an additional layer of subunits assembles on extended areas of the inside of the mucopeptide layer. These observations indicate that the biological function of the S layer depends on its ability to maintain a complete covering of the cell surface at all stages of cell growth and division.  相似文献   

10.
Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.  相似文献   

11.
Summary The large unicellular flagellate,Gloeomonas kupfferi, has recently been used as an important tool in chlamydomonad cell biology research, especially in studies dealing with the structure and function of the endomembrane system. However, little is known about the main secretory product, the cell wall. This study presents structural, chemical and immunological information about this wall. This 850–900 nm thick matrix is highly elaborate and consists of three distinct layers: an inner stratum (325 nm thick) consisting of tightly interwoven fibers, a medial crystalline layer consisting of 22–23 nm subunits and an outer wall layer (500 nm thick) of outwardlyradiating fibrils. Rapid freeze-deep etch analysis reveals that the 35–40 nm fibers of the outer layer form a quasi-lattice of 160 nm subunits. The outer wall can be removed from whole pellets using the chelator, CDTA. The medial wall complex can be solubilized by perchlorate. SDS-gel electrophoresis reveals that the perchlorate soluble-material consists of five high molecular weight glycoproteins and five major low molecular weight glycoproteins. The electrophoretic profile is roughly similar to that ofChlamydomonas reinhardtii. Antibodies were successfully raised against the outer wall component and were shown to label the outer wall layer.  相似文献   

12.
In the field of organic solar cells (OSCs), tandem structure devices exhibit very attractive advantages for improving power conversion efficiency (PCE). In addition to the well researched novel pair of active layers in different subcells, the construction of interconnecting layer (ICL) also plays a critical role in achieving high performance tandem devices. In this work, a new way of achieving environmentally friendly solvent processed polymeric ICL by adopting poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐5,5′‐bis(2,2′‐thiophene)‐2,6‐naphthalene‐1,4,5,8‐tetracaboxylic‐N,N′‐di(2‐ethylhexyl)imide] (PNDIT‐F3N) blended with poly(ethyleneimine) (PEI) as the electron transport layer (ETL) and PEDOT:PSS as the hole transport layer is reported. It is found that the modification ability of PNDIT‐F3N on PEDOT can be linearly tuned by the incorporation of PEI, which offers the opportunity to study the charge recombination behavior in ICL. At last, tandem OSC with highest PCE of 12.6% is achieved, which is one of the best tandem OSCs reported till now. These results offer a new selection for constructing efficient ICL in high performance tandem OSCs and guide the way of design new ETL materials for ICL construction, and may even be integrated in future printed flexible large area module device fabrication with the advantages of environmentally friendly solvent processing and thickness insensitivity.  相似文献   

13.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

14.
Freeze-etching of Lactobacillus fermenti F-4 (NCTC 7230) revealed that the outer layer of the cell wall was composed of a regular array in which parallel lines ran obliquely to the longitudinal axis of the cell with an average distance between the centers of about 9.6 nm and were intersected by thinner lines with an average periodicity of approximately 6.2 nm at an angle of about 75°. Occasionally the direction of the striation was discontinuously shifted near one end of the cell. Beneath the regular array the middle cell wall layer packed with granules and the smooth inner cell wall layer were discernible and the mesosomes were also visible in the cytoplasm. When the ultrastructure of isolated outer cell wall fragments was examined by negative staining, the regular array appeared to be composed of subunits, about 3.6 nm in diameter, which were arranged in a tetragonal pattern. The tetragonal array consisted of the subunits in rows in two directions at an angle of about 75° to each other. The average spacing between the rows was about 9.3 nm in one direction and 5.5 nm in the other direction.  相似文献   

15.
16.
17.
Summary The fine structure of the phototrophic sulfur bacterium Chromatium buderi was studied in ultrathin sections and freeze-etch preparations.In addition to an intracytoplasmic membrane system common to all species of the Chromatiaceae, C. buderi contained extended lamellar membrane structures possibly due to too high light intensities during growth. The cell wall of C. buderi was found to be covered by a honeycomb-like outer layer consisting of macromolecular wine-glass shaped subunits 60–80 nm by 60 nm in size. This outer cell wall layer appears to be a typical property of the large cell Chromatium species.Contribution No. 3008 of the Woods Hole Oceanographic Institution.  相似文献   

18.
The cell wall of Lactobacillus brevis was revealed by electron microscopy to have an outer layer composed of a regular array. The morphological unit of the regular array appeared to consist of four spherical subunits, each about 2 nm in diameter, which were arranged in a tetragonal pattern about 4.5 by 7.0 nm in dimension. The regular array was composed of the tetragonal units in rows in two directions at an angle of about 75 degrees to each other. The average spacing between the rows was about 10 nm in one direction and about 7 nm in the other. The tetragonally arranged subunits were removed from the cell wall by treatment with guanidine hydrochloride, urea, or sodium dodecyl sulfate (SDS) but not by the action of ethylenediaminetetraacetate, nonionic detergents, or proteolytic enzymes except pepsin. The regular subunits were shown to be composed of a protein with a molecular weight of about 51,000 by SDS-polyacrylamide gel electrophoresis.  相似文献   

19.
The innermost chorionic layer (ICL) in eggshells of Drosophila melanogaster is a naturally occurring patchwork of thin three-dimensional crystalline plates located between the inner endochorion and the vitelline envelope. The mass-per-unit area of the ICL has been measured from scanning transmission electron microscope images of isolated unstained material and it was possible to distinguish up to four layers with the majority of the crystalline sheets being one to three layers thick. Taking into account the unit cell areas for the different crystals, we have estimated the mean ICL subunit sizes to be 36 kDa for Drosophila melanogaster, 35 kDa for Drosophila auraria, and 33 kDa for Drosophila teissieri. The results suggest that the three different Drosophilidae species have very similar average subunit masses.  相似文献   

20.
Yeast mutants, snm1 (pso2-1), rev3 (pso1-1), and rad51, which display significant sensitivity to interstrand crosslinks (ICLs) have low relative sensitivity to other DNA damaging agents. SNM1, REV3, and RAD51 were disrupted in the same haploid strain, singly and in combination. The double mutants, snm1 Delta rev3 Delta, snm1 Delta rad51 Delta and rev3 Delta rad51 Delta were all more sensitive to ICLs than any of the single mutants, indicating that they are in separate epistasis groups for survival. A triple mutant displayed greater sensitivity to ICLs than any of the double mutants, with one ICL per genome being lethal. Therefore, Saccharomyces cerevisiae appears to have three separate ICL repair pathways, but no more. S-phase delay was not observed after ICL damage introduced by cisplatin (CDDP) or 8-methoxypsoralen (8-MOP) during the G1-phase, in any of the above mutants, or in an isogenic rad14 Delta mutant deficient in nucleotide excision repair. However, the psoralen analog angelicin (monoadduct damage) induced a significant S-phase delay in the rad14 Delta mutant. Thus, normal S-phase in the presence of ICLs does not seem to be due to rapid excision repair. The results also indicate that monoadduct formation by CDDP or 8-MOP at the doses used is not sufficient to delay S-phase in the rad14 Delta mutant. While the sensitivity of a rev3 Delta mutant indicates Pol zeta is needed for optimal ICL repair, isogenic cells deficient in Pol eta (rad30 Delta cells) were not significantly more sensitive to ICL agents than wild-type cells, and have no S-phase delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号