首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Cytotherapy》2023,25(3):277-285
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott–Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor–T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.  相似文献   

2.
J F Gusella 《FASEB journal》1989,3(9):2036-2041
The recognition that DNA polymorphisms are widespread in the human genome and can be used as high quality genetic markers has introduced a new strategy for approaching inherited disorders for which no protein defect has been identified. Genetic linkage analysis can establish the chromosomal position of the genetic defect, providing a potential opportunity for isolating the disease gene and characterizing its product in the absence of any knowledge of its biochemical function. The first step in this location cloning approach has been successful in mapping the Huntington's disease gene to chromosome 4, and has implicated chromosome 21 as the site of a defect in familial Alzheimer's disease. An intensive effort is under way to narrow the region containing the disease gene and identify the defect in each of these disorders. This review will present the success that has been achieved and the problems that remain and will assess the current status of the location cloning strategy with regard to Huntington's disease and familial Alzheimer's disease.  相似文献   

3.
Summary Recombinant DNA methodology has greatly increased our knowledge of the molecular pathology of the human genome at the same time as providing the means to diagnose inherited disease as the DNA level. We present here a list of recent reports of both direct and indirect analysis of human inherited disease which is intended to serve as a guide to current molecular genetic approaches to diagnostic medicine.  相似文献   

4.
Gene targeting technology in mice by homologous recombination has become an important method to generate loss-of-function of genes in a predetermined locus. Although the inactivation is limited to irreversible alteration of chromosomal DNA and a surprising variety of genes have given unexpected and disappointing results, modification of the basic technology now provides additional choices for a more specific and variety of manipulations of the mouse genome. This includes conditional cell-type specific gene targeting, knockin technique and the induction of the specific balanced chromosomal translocations. In the past decade this technique not only generated a wealth of knowledge concerning the roles of growth factors, oncogenes, hormone receptors and Hox genes but also helped to produce animal models for several human genetic disorders. In the future it may provide more powerful and necessary tools to dissect the psychiatric disorders, understanding the complex central nervous system and to correct the inherited disorders.  相似文献   

5.
Electrospray tandem mass spectrometry was applied to detect a series of inherited metabolic disorders during a newborn-screening pilot study and a selective screening in Japan. In our mass screening of 102,200 newborns, five patients with propionic acidemia, two with methylmalonic acidemia, two with medium-chain acyl-CoA dehydrogenase deficiency, three with citrullinemia type II, and one with phenylketonuria were identified. In a selective screening of 164 patients with symptoms mainly related to hypoglycemia and/or hyperammonemia, 12 with fatty acid oxidation disorders and six with other disorders were found. The results indicated the importance of newborn screening using this technology in Japan.  相似文献   

6.
为快速准确、低成本、高通量地检测我国人群常见的遗传性胆红素代谢障碍及胆汁淤积综合征,选择了10个易感基因的全部外显子及内含子剪切区的SNP/CNV,建立了基于二代测序技术(next generation sequencing, NGS)的靶向捕获测序方法。通过6例已知突变位点的样本对该方法的准确性进行验证,准确率为100%。收集首都医科大学附属北京友谊医院遗传性胆红素代谢障碍及胆汁淤积综合征患者39例进行检测,共检测到58种突变。检测结果与HGMD、Clin Var、OMIM突变数据库比较,未报道的突变通过千人基因组数据集对比并按照哈温平衡检验(HWE_P>0.05)和χ2检验确定新突变19种。检测到的不同突变类型有效地揭示了该类疾病的遗传多样性。NGS方法的建立及应用为临床诊断提供了新的技术手段。  相似文献   

7.
8.
I McIntosh  G R Cutting 《FASEB journal》1992,6(10):2775-2782
Cystic fibrosis (CF) is an inherited disorder causing pancreatic, pulmonary, and sinus disease in children and young adults. Abnormal viscosity of mucous secretions is a hallmark of the disease, and is believed to be the result of altered electrolyte transport across epithelial cell membranes. The monogenic etiology of this disease has been apparent for more than 40 years, but the defective gene has only recently been identified. This was made possible because of a revolution in genetic technology, called positional cloning, which can pinpoint disease genes without previous knowledge of the abnormal protein product. The protein encoded by the gene defective in CF has been termed the CF transmembrane conductance regulator (CFTR) because of its postulated role in electrolyte transport. Studies investigating the normal function of CFTR and how mutations affect that function, thereby causing CF, have required the combined skills of clinicians, geneticists, molecular biologists, and physiologists. From this collaborative effort a greater understanding of the pathogenesis of this disorder is now emerging. It may soon be possible to introduce novel therapies derived from this new knowledge that will be aimed directly at the basic defect. An ever-increasing number of genes of unknown function will be identified by continuing advances in molecular genetic technology and the advent of the genome sequencing project. The experience in cystic fibrosis research may prove to be a paradigm for investigation of the function of genes isolated by positional cloning methods.  相似文献   

9.
Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington’s disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington’s disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.  相似文献   

10.
Several inherited disorders affecting the biosynthetic pathways of N-glycans have been discovered during the past years. This review summarizes the current knowledge in this rapidly expanding field and covers the molecular bases of these disorders as well as their phenotypical consequences.  相似文献   

11.
Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Precise genetic manipulation is crucial to all these applications, and many recent advances have been made in site specific nuclease systems like zinc finger nucleases, TALENs, and CRISPR/Cas. In this review, we address the importance of site-specific genome modification and how this technology can be applied to manipulate human pluripotent stem cells.  相似文献   

12.
The genetics of Parkinson's disease   总被引:5,自引:0,他引:5  
The effort to map the entire human genome has led recently to the important milestone publication in late 1999 of the complete sequence of chromosome 22. This has been facilitated by increasingly sophisticated tools for genetic analysis and the ensuing wealth of detailed genetic information. The quest for genetic factors contributing to Parkinson's disease and parkinsonian disorders has revealed a progressively complex picture implicating gene mutations in the rarer, autosomally inherited forms of Parkinson's disease and the interplay of genetic and/or environmental factors in the common sporadic forms of the disorder. These findings not only reiterate the complex genetic heterogeneity of Parkinson's disease but could also point towards common pathogenic mechanisms in Parkinson's disease and related neurodegenerative disorders.  相似文献   

13.
Our understanding of the sphingolipidoses has improved as a result of the investigation of molecular mechanisms causing clinical heterogeneity. This knowledge, derived from both the protein and gene structures, should bring therapy for these inherited disorders closer to a realistic possibility.  相似文献   

14.
The nature of DNA, the sequence of the human genome and our increased understanding of the genetic basis of many inherited and acquired disorders have made the possibility of curing diseases a reality. The modulation of a host's genome is now the ultimate goal in the treatment of genetic diseases. Historically, gene therapy recognized two very different approaches: gene replacement or augmentation and gene repair. Gene repair precisely targets and corrects the chromosomal mutation responsible for a genetic and/or acquired disorder. Many recent advances have been made in this area of research.  相似文献   

15.
Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS).  相似文献   

16.
Mitochondrial disorders are by far the most genetically heterogeneous group of diseases, involving two genomes, the 16.6 kb mitochondrial genome and ~ 1500 genes encoded in the nuclear genome. For maternally inherited mitochondrial DNA disorders, a complete molecular diagnosis requires several different methods for the detection and quantification of mtDNA point mutations and large deletions. For mitochondrial disorders caused by autosomal recessive, dominant, and X-linked nuclear genes, the diagnosis has relied on clinical, biochemical, and molecular studies to point to a group of candidate genes followed by stepwise Sanger sequencing of the candidate genes one-by-one. The development of Next Generation Sequencing (NGS) has revolutionized the diagnostic approach. Using massively parallel sequencing (MPS) analysis of the entire mitochondrial genome, mtDNA point mutations and deletions can be detected and quantified in one single step. The NGS approach also allows simultaneous analyses of a group of genes or the whole exome, thus, the mutations in causative gene(s) can be identified in one-step. New approaches make genetic analyses much faster and more efficient. Huge amounts of sequencing data produced by the new technologies brought new challenges to bioinformatics, analytical pipelines, and interpretation of numerous novel variants. This article reviews the clinical utility of next generation sequencing for the molecular diagnoses of complex dual genome mitochondrial disorders.  相似文献   

17.
《遗传学报》2021,48(12):1045-1056
Chromosomes in eukaryotic cell nuclei are highly compacted and finely organized into hierarchical three-dimensional (3D) configuration. In recent years, scientists have gained deeper understandings of 3D genome structures and revealed novel evidence linking 3D genome organization to various important cell events on the molecular level. Most importantly, alteration of 3D genome architecture has emerged as an intriguing higher order mechanism that connects disease-related genetic variants in multiple heterogenous and polygenic neuropsychological disorders, delivering novel insights into the etiology. In this review, we provide a brief overview of the hierarchical structures of 3D genome and two proposed regulatory models, loop extrusion and phase separation. We then focus on recent Hi-C data in the central nervous system and discuss 3D genome alterations during normal brain development and in mature neurons. Most importantly, we make a comprehensive review on current knowledge and discuss the role of 3D genome in multiple neuropsychological disorders, including schizophrenia, repeat expansion disorders, 22q11 deletion syndrome, and others.  相似文献   

18.
Summary Much of our current knowledge about the physiology of hemostasis has come from intensive study of platelets from patients with inherited and acquired bleeding disorders or an increased risk of thrombotic disease. Appreciation of the role of plasma proteins in platelet stickiness, of platelet surface membrane glycoproteins in aggregation, of the substances stored in platelet organelles in cell-cell interaction, vascular injury and atherosclerosis, and of endoperoxides and thromboxanes in platelet intercellular communication have resulted largely from investigations on various types of defective platelets. While the techniques of physiology and biochemistry have generated critical details about abnormal platelets, electron microscopy and ultrastructural cytochemistry have provided an improved morphological framework in which to integrate the new discoveries. The present review has attempted to correlate physiological, biochemical and ultrastructural concepts as they relate to the current understanding of inherited platelet disorders.  相似文献   

19.
Abstract

The tools of molecular biology will bring the field of human genetics into a new era by permitting the analysis of the genetic contribution to disease. Most single gene disorders, inherited in a Mendelian fashion, will be molecularly diagnosed. In addition, the genetic susceptibility of common, complex diseases such a schizophrenia can be clarified, even though the conditions are not inherited as Mendelian characteristics. The mapping of the human genome will increase the rate at which new disease genes are identified and isolated. Finally, the development of genetically engineered animal models will help to dissect the steps involved in physiological and pathophysiological processes and thereby enhance our understanding of complex biological systems.  相似文献   

20.
With the expansion of next‐generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost‐effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited. New approaches are required to validate reference genome assemblies. The ability to isolate individual chromosomes combined with next‐generation sequencing permits the validation of genome assemblies at the chromosome level. We demonstrate this approach by the assessment of the recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests that these genomes should be very similar, a comparison of their chromosome sizes and published assemblies highlights significant differences. Our chromosomal genomics analysis highlights short defined regions that appear to have been misassembled in the kabuli genome and identifies large‐scale misassembly in the draft desi genome. The integration of chromosomal genomics tools within genome sequencing projects has the potential to significantly improve the construction and validation of genome assemblies. The approach could be applied both for new genome assemblies as well as published assemblies, and complements currently applied genome assembly strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号