首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
A Monte Carlo simulation based on the population structure of a small-scale human population, the Semai Senoi of Malaysia, has been developed to study the combined effects of group, kin, and individual selection. The population structure resembles D.S. Wilson's structured deme model in that local breeding populations (Semai settlements) are subdivided into trait groups (hamlets) that may be kin-structured and are not themselves demes. Additionally, settlement breeding populations are connected by two-dimensional stepping-stone migration approaching 30% per generation. Group and kin-structured group selection occur among hamlets the survivors of which then disperse to breed within the settlement population. Genetic drift is modeled by the process of hamlet formation; individual selection as a deterministic process, and stepping-stone migration as either random or kin-structured migrant groups. The mechanism for group selection is epidemics of infectious disease that can wipe out small hamlets particularly if most adults become sick and social life collapses. Genetic resistance to a disease is an individual attribute; however, hamlet groups with several resistant adults are less likely to disintegrate and experience high social mortality. A specific human gene, hemoglobin E, which confers resistance to malaria, is studied as an example of the process. The results of the simulations show that high genetic variance among hamlet groups may be generated by moderate degrees of kin-structuring. This strong microdifferentiation provides the potential for group selection. The effect of group selection in this case is rapid increase in gene frequencies among the total set of populations. In fact, group selection in concert with individual selection produced a faster rate of gene frequency increase among a set of 25 populations than the rate within a single unstructured population subject to deterministic individual selection. Such rapid evolution with plausible rates of extinction, individual selection, and migration and a population structure realistic in its general form, has implications for specific human polymorphisms such as hemoglobin variants and for the more general problem of the tempo of evolution as well.  相似文献   

2.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

3.
The evolution of segregation distortion is governed by the interplay of selection at different levels. Despite their systematic advantage at the gamete level, none of the well-known segregation distorters spreads to fixation since they induce severe negative fitness effects at the individual level. In a deme-structured population, selection at the population level also plays a role. By means of a population genetical model, we analyse the various factors that determine the success of a segregation distorter in a metapopulation. Our focus is on the question of how the success of a distorter allele is affected by its segregation ratio and its fitness effects at the individual level. The analysis reveals that distorter alleles with high segregation ratios are the best invaders and reach the highest frequencies within single demes. However, the productivity of a deme harbouring a distorter with a high segregation ratio may be significantly reduced. As a consequence, an efficient distorter will be underrepresented in the migrant pool and, moreover, it may increase the probability of deme extinction. In other words, efficient distorters with high segregation ratios may well succumb to their own success. Therefore, distorters with intermediate segregation ratios may reach the highest frequency in the metapopulation as a result of the opposing forces of gamete, individual and group selection. We discuss the implications of this conclusion for the t complex of the house mouse.  相似文献   

4.
Gene genealogies in a metapopulation   总被引:1,自引:0,他引:1  
Wakeley J  Aliacar N 《Genetics》2001,159(2):893-905
A simple genealogical process is found for samples from a metapopulation, which is a population that is subdivided into a large number of demes, each of which is subject to extinction and recolonization and receives migrants from other demes. As in the migration-only models studied previously, the genealogy of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that dominates the history. This result will hold for metapopulations that are composed of a large number of demes. It is robust to the details of population structure, as long as the number of possible source demes of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are possible, and results for average numbers of pairwise differences within and between demes are given. Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some previously known differences between migration and extinction/recolonization. The ancestral process is also amenable to computer simulation. Simulation results show that migration and extinction/recolonization have very different effects on the site-frequency distribution in a sample from a single deme. Migration can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-frequency distribution at intermediate frequencies, even in a sample from a single deme.  相似文献   

5.
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.  相似文献   

6.
Many species exist as metapopulations in balance between local population extinction and recolonization, processes that may strongly affect the distribution of neutral genetic diversity within demes and in the metapopulation as a whole. In this paper we use both the infinite-alleles and the infinite-sites models to reframe Slatkin's propagulepool and migrant-pool models in terms of mean within-deme and among-deme genetic diversity; the infinite-sites model is particularly relevant to DNA sequence data. Population turnover causes a major reduction in neutral genetic diversity within demes, πS, and in the metapopulation as a whole, πt. This effect is particularly strong for propagulepool colonization, in which colonists are drawn from a single extant deme. Because metapopulation dynamics affect both within-deme and total metapopulation diversity similarly, comparisons between species with different ecologies on the basis of ratios such as FST are difficult to interpret and absolute measures of divergence between populations should be used as well. Although the value of FST in a metapopulation with local extinction depends strongly on the mode of colonization, this has almost no effect on the numerator of the FST ratio, πt – πS, so that FST is influenced mainly by the effect of the colonization mode on the denominator (πt). Our results also indicate that it is inappropriate to use measures of average within-deme diversity in species with population turnover to estimate the scaled mutation rate, θ, because extinction can greatly reduce πS. Finally, we discuss the effect of population turnover on the effective size of a metapopulation.  相似文献   

7.
Genetic analysis has been promoted as a way to reconstruct recent historical dynamics (“historical demography”) by screening for signatures of events, such as bottlenecks, that disrupt equilibrium patterns of variation. Such analyses might also identify “metapopulation” processes like extinction and recolonization or source-sink dynamics, but this potential remains largely unrealized. Here we use simulations to test the ability of two currently used strategies to distinguish between a set of interconnected subpopulations (demes) that have undergone bottlenecks or extinction and recolonization events (metapopulation dynamics) from a set of static demes. The first strategy, decomposed pairwise regression, provides a holistic test for heterogeneity among demes in their patterns of isolation-by-distance. This method suffered from a type II error rate of 59–100 %, depending on parameter conditions. The second strategy tests for deviations from mutation-drift equilibrium on a deme-by-deme basis to identify sites likely to have experienced recent bottlenecks or founder effects. Although bottleneck tests have good statistical power for single populations with recent population declines, their validity in structured populations has been called into question, and they have not been tested in a metapopulation context with immigration (or colonization) and population recovery. Our simulations of hypothetical metapopulations show that population recovery can rapidly eliminate the statistical signature of a bottleneck, and that moderate levels of gene flow can generate a false signal of recent population growth for demes in equilibrium. Although we did not cover all possible metapopulation scenarios, the performance of the tests was disappointing. Our results indicate that these methods might often fail to identify population bottlenecks and founder effects if population recovery and/or gene flow are influential demographic features of the study system.  相似文献   

8.
Palstra FP  Ruzzante DE 《Heredity》2011,107(5):444-455
The preservation of biodiversity requires an understanding of the maintenance of its components, including genetic diversity. Effective population size determines the amount of genetic variance maintained in populations, but its estimation can be complex, especially when populations are interconnected in a metapopulation. Theory predicts that the effective size of a metapopulation (meta-N(e)) can be decreased or increased by population subdivision, but little empirical work has evaluated these predictions. Here, we use neutral genetic markers and simulations to estimate the effective size of a putative metapopulation in Atlantic salmon (Salmo salar). For a weakly structured set of rivers, we find that meta-N(e) is similar to the sum of local deme sizes, whereas higher genetic differentiation among demes dramatically reduces meta-N(e) estimates. Interdemic demographic processes, such as asymmetrical gene flow, may explain this pattern. However, simulations also suggest that unrecognized population subdivision can also introduce downward bias into empirical estimation, emphasizing the importance of identifying the proper scale of distinct demographic and genetic processes. Under natural patterns of connectivity, evolutionary potential may generally be maintained at higher levels than the local population, with implications for conservation given ongoing species declines and habitat fragmentation.  相似文献   

9.
The Effective Size of a Subdivided Population   总被引:22,自引:4,他引:18       下载免费PDF全文
This paper derives the long-term effective size, N(e), for a general model of population subdivision, allowing for differential deme fitness, variable emigration and immigration rates, extinction, colonization, and correlations across generations in these processes. We show that various long-term measures of N(e) are equivalent. The effective size of a metapopulation can be expressed in a variety of ways. At a demographic equilibrium, N(e) can be derived from the demography by combining information about the ultimate contribution of each deme to the future genetic make-up of the population and Wright's F(ST)'s. The effective size is given by N(e) = 1/(1 + var ( &))<(1 - f(STi))/N(i)n>, where n is the number of demes, &(i) is the eventual contribution of individuals in deme i to the whole population (scaled such that σ(i) &(i) = n), and < > denotes an average weighted by &(i)(2). This formula is applied to a catastrophic extinction model (where sites are either empty or at carrying capacity) and to a metapopulation model with explicit dynamics, where extinction is caused by demographic stochasticity and by chaos. Contrary to the expectation from the standard island model, the usual effect of population subdivision is to decrease the effective size relative to a panmictic population living on the same resource.  相似文献   

10.
By using a Monte Carlo simulation, we studied the effect of group selection on the altruistic trait that is controlled by a single locus. The altruistic trait is disadvantageous to the bearer but advantageous to the others. Group selection is defined as the differential reproductive rate among demes caused by genotypic difference among demes. We found that the simulation reproduced many results of former studies. Additionally, when the mutation rate and the migration rate are small enough, we observed two new phenomena: (1) When the effect of the group selection is as large as that of the individual selection, the gene frequency is quite unstable. We found two local stable states, the A- and the S-state. When the metapopulation is in the A-state, altruists are nearly fixed. When in the S-state, on the contrary, altruists are almost lost. The metapopulation shifted quickly from one state to another. We call this phenomenon as the S-A transition. (2) When the mutation rate and migration rate are small enough we found an extremely strong mechanism to stop the non-altruists from expanding no matter how strong the individual selection coefficient is. This is caused by a phenomenon, which we call SA splitting, in which most demes are fixed either by altruists or non-altruists; thus, the relatedness of the metapopulation becomes nearly equal to one. We show SA splitting plays an important role in S-A transition. We define a parameter d to see the degree of SA splitting. We found that d is roughly proportional to mutation rate and deme size.  相似文献   

11.
Roze D  Rousset F 《Genetics》2003,165(4):2153-2166
Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it relies on general expressions for the expectation and variance in allele frequency change over one generation, in terms of partial derivatives of a "fitness function" and probabilities of genetic identity evaluated in a neutral model. In the limit of a very large number of demes, these probabilities can be expressed as functions of average allele frequencies in the metapopulation, provided that coalescence occurs on two different timescales, which is the case in the island model. We then use the method to derive expressions for the probability of fixation of new mutations, as a function of their dominance coefficient, the rate of partial selfing, and the rate of deme extinction. We obtain more precise approximations than those derived by recent work, in particular (but not only) when deme sizes are small. Comparisons with simulations show that the method gives good results as long as migration is stronger than selection.  相似文献   

12.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

13.
Many short‐lived organisms pass through several generations during favorable growing seasons, separated by inhospitable periods during which only small hibernating or estivating refugia remain. This induces pronounced seasonal fluctuations in population size and metapopulation structure. The first generations in the growing season will be characterized by small, relatively isolated demes whereas the later generations will experience larger deme sizes with more extensive gene flow. Fluctuations of this sort can induce changes in the amount of genetic variation in early season samples compared to late season samples, a classical example being the observations of seasonal variation in allelism in New England Drosophila populations by P.T. Ives. In this article, we study the properties of a structured coalescent process under seasonal fluctuations using numerical analysis of exact state equations, analytical approximations that rely on a separation of timescales between intrademic versus interdemic processes, and individual‐based simulations. We show that although an increase in genetic variation during each favorable growing season is observed, it is not as pronounced as in the empirical observations. This suggests that some of the temporal patterns of variation seen by Ives may be due to selection against deleterious lethals rather than neutral processes.  相似文献   

14.
Defining computable analytical measures of the effects of selection in populations with demographic and environmental stochasticity is a long-standing problem. We derive an analytical measure which takes in account all consequences of the discrete nature of deme size. Expressions of this measure are detailed for infinite island models of population structure. As an illustration we consider the evolution of dispersal in populations made of small demes with environmental and demographic stochasticity. We confirm some results obtained from the analysis of models based on deterministic approximations. In particular, when there is an Allee effect, we show that evolution of the dispersal rate may lead the metapopulation to extinction. Thus, selection on the dispersal rate could restrict the distribution of species subject to Allee effects. This selection-driven extinction is prevented by kin selection when the environmental extinction rate is small.  相似文献   

15.
Genetic variation in insect populations is frequently structured into discrete groups, or demes, that form in response to stochastic forces or natural selection. Because host-plant populations are often highly heterogeneous, phytophagous insects may form demes that are adapted to the unique traits of individual plants. Recent field experiments indicate that selection pressures imposed by host-plants can promote rapid adaptive evolution in natural insect populations at very fine spatial scales. Adaptive deme formation may be more common among endophagous insects, which feed and reside within plant tissue, than for externally feeding insects, because internal feeders experience stronger plant-mediated selection pressures.  相似文献   

16.
The change of absolute deme frequencies in a discrete-time model of multiple, mutually genetically incompatible subpopulations (demes) which are still in mating contact has been studied. The attempt was made to answer the question of which initial conditions concerning deme frequencies lead to extinction or survival of certain demes. A complete answer could be given for the density-independent model and, with some restrictions, for a particular kind of density-dependent model assuming essentially complete niche overlap. For a more general model of density dependence, necessary initial conditions for deme extinction have been derived. Some implications for pest control have been briefly outlined.  相似文献   

17.
Previous studies have shown that temporally fluctuating environments can create indirect selection for modifiers of evolvability. Here, we use a simple computational model to investigate whether spatially varying environments (multiple demes with limited migration among them, and a different, static selective optimum in each) can also create indirect selection for increased evolvability. The answer is surprisingly complicated. Spatial variation in the environment can sharply reduce the survival rate of migrants, because migrants may be maladapted to their new deme, relative to incumbents. The incumbent advantage can be removed by occasional extinctions in single demes. After all incumbents in a particular deme die, incoming migrants from other demes will, on average, be similarly maladapted to the new environment. This sets off a race to adapt rapidly. Over many extinction events, and the subsequent invasions by maladapted immigrants into a new environment, indirect selection for the ability to adapt rapidly, also known as high evolvability, may result.  相似文献   

18.
Extranuclear differentiation and gene flow in the finite island model   总被引:15,自引:8,他引:7       下载免费PDF全文
Takahata N  Palumbi SR 《Genetics》1985,109(2):441-457
Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.  相似文献   

19.
Arnaud JF  Cuguen J  Fénart S 《Heredity》2011,107(5):395-404
This study explores the microspatial and temporal genetic variation in crop-wild hybrid weed beets that emerged from the seed bank in a cultivated field surveyed over two successive years. We demonstrate the occurrence of demes highly genetically differentiated, kin-structured, characterized by moderate effective population sizes, differing in propensity for selfing, and arising from nonrandom genetic subsets of the seed bank. Only one deme identified in the first survey year significantly contributed to the weed beets that emerged in the second year. Spatial structuring appears to be primarily due to gravity seed dispersal and limited pollen flow among weed beet demes. Within each genetic cluster identified by Bayesian assignments and multivariate analyses, F(IS) estimates and level of biparental inbreeding--revealed by progeny analyses--dropped to non-significant values. This suggests that random mating occurs at the scale of genetically distinct demes over a very short scale. Our results highlight the need to carefully depict genetic discontinuities in weed species, when attempting to describe their local genetic neighborhoods within which genetic drift and selective processes occur.  相似文献   

20.
SYNOPSIS. Female retired breeder A/J mice were infected with Plasmodium berghei NK65C deme. Those animals which recovered were allowed to recrudesce and were inoculated again with NK65C. Twenty-one weeks after the original challenge, the mice were divided into 2 equal groups. One group was challenged with NK65C and the other with NK65E. Both demes of P. berghei were mosquito derived from NK65. NK65C appeared to give less protection to mice challenged with NK65E deme than to those challenged with the homologous NK65C deme. One mouse which had recovered from infection with NK65C deme died from the NK65E challenge. No definitive conclusions could be drawn regarding antigenic variation and virulence between demes E and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号