首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suction is produced during prey capture by most teleost fishes. Here, we ask two questions about the functional basis of suction feeding. First, is there variation in the kinematic pattern produced by different species while suction feeding? Second, do species termed 'suction specialists' demonstrate similar modifications to their feeding behavior? We used 10 kinematic variables in a principal component analysis to identify axes of variation among 14 suction feeding teleost species (representing nine families and five orders within the Euteleostei) that demonstrate different feeding habits and habitats. MANOVA and Tukey post hoc tests were used to assess differences among species. Most species clustered together on the principal component axes, suggesting a generalized mechanism that facilitates unidirectional flow. Typically, only one species stood out as 'extreme' on each functional axis, and a species that stood out on one axis did not stand out on others. Only one species, the flatfish Pleuronichthys verticalis, an obligate benthic feeder, demonstrated modifications consistent with enhanced suction production. This species displayed a suite of changes that should enhance suction production, including large hyoid depression, large cranial rotation, and small gape. We suggest that suction performance may be greatest in such obligate benthic feeders because cranial morphology is highly modified and prey are captured from the substrate.  相似文献   

2.
The feeding mechanism and kinematics of prey capture have been studied in many fishes. However, the effects of satiation on the strike mode and prey capture kinematics have never been directly measured. We analyze 12 kinematic variables to determine the effects of satiation on prey capture in five largemouth bass, Micropterus salmoides, by using high speed videography. We also present the first experimental test for modulatory capabilities in response to satiation, by using the ram-suction index. Significant changes in the kinematic variables of maximum lower jaw depression, maximum gape distance, maximum hyoid depression, time to maximum hyoid depression, and time from maximum hyoid depression to recovery were seen with the effects of satiation. Change in the kinematic variables imply a decrease in jaw opening velocity and the magnitude of suction velocity created during repetitive strikes by M. salmoides with increasing satiation. The bass primarily uses a ram strike mode, with some suction bites occasionally. Ram-suction index analyses suggests that M. salmoides does not modulate strike mode in response to satiation. However, the bass modulate prey capture kinematics without altering strike mode with the effects of satiation. Prey capture success decreases in each bass, as the probability of a successful prey capture event becomes lower, with increasing satiation. These findings demonstrate that satiation can have major effects on prey capture kinematics and future studies of feeding kinematics should account for satiation in their analyses.  相似文献   

3.
Summary Nestlings of the communally breeding Greycrowned Babbler (Pomatostomus temporalis) were studied to discover if supplemental feeding by auxiliary birds at nests enhanced their growth. Growth of wing, bill, tarsus and weight was measured. Growth curves were fitted by computer using a commercial program (MLAB). Our data provided little support for possible sibling competition. A significant component of the variance in asymptote and growth constant for some variables could be attributed to differences among nests. Environmental variables such as temperature and rainfall were much more strongly associated with nestling growth than were the numbers of auxiliary birds feeding broods.  相似文献   

4.
The Labridae (including wrasses, the Odacidae and the Scaridae) is a species‐rich group of perciform fishes whose members are prominent inhabitants of warm‐temperate and tropical reefs worldwide. We analyse functionally relevant morphometrics for the feeding apparatus of 130 labrid species found on the Great Barrier Reef and use these data to explore the morphological and mechanical basis of trophic diversity found in this assemblage. Morphological measurements were made that characterize the functional and mechanical properties of the oral jaws that are used in prey capture and handling, the hyoid apparatus that is used in expanding the buccal cavity during suction feeding, and the pharyngeal jaw apparatus that is used in breaking through the defences of shelled prey, winnowing edible matter from sand and other debris, and pulverizing the algae, detritus and rock mixture eaten by scarids (parrotfishes). A Principal Components Analysis on the correlation matrix of a reduced set of ten variables revealed complete separation of scarids from wrasses on the basis of the former having a small mouth with limited jaw protrusion, high mechanical advantage in jaw closing, and a small sternohyoideus muscle and high kinematic transmission in the hyoid four‐bar linkage. Some scarids also exhibit a novel four‐bar linkage conformation in the oral jaw apparatus. Within wrasses a striking lack of strong associations was found among the mechanical elements of the feeding apparatus. These weak associations resulted in a highly diverse system in which functional properties occur in many different combinations and reflect variation in feeding ecology. Among putatively monophyletic groups of labrids, the cheilines showed the highest functional diversity and scarids were moderately diverse, in spite of their reputation for being trophically monomorphic and specialized. We hypothesize that the functional and ecological diversity of labrids is due in part to a history of decoupled evolution of major components of the feeding system (i.e. oral jaws, hyoid and pharyngeal jaw apparatus) as well as among the muscular and skeletal elements of each component. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 1–25.  相似文献   

5.
Functional morphologists commonly study feeding behavior in vertebrates by recording electrical activity from head muscles during unrestrained prey capture. Rarely are experiments designed to permit a partitioning variation in muscle electrical activity patterns. Analysis of muscle activity during aquatic prey capture in two morphologically distinct species of salamanders, Ambystoma dumerilii and A. mexicanum, is conducted to assess variation at four levels: between species, among individuals within species, among experiments conducted on different days, and among feedings. The results show that 1) mean correlations among the 11 electromyographic variables measured for each feeding are low and vary considerably among individuals, 2) many of the variables show significant differences among experimental days, 3) only one variable, the difference in timing between the depressor mandibulae and sternohyoideus muscles, showed significant variation between species, and 4) seven of the 11 variables showed significant variation among individuals within species. Overall, the variation between feedings (trials) was high, and there was some variation between days on which the experiments were conducted. Neither electrode position within the muscle nor satiation contributed to the high trial variance. The results suggest that functional analyses of feeding behavior should include an assessment of variation due to individuals, days, and trials, because the amount of variation at these levels may render differences between species nonsignificant.  相似文献   

6.
The hypothesis that the mandibular and hyoid arches evolved from anterior pharyngeal arches to increase ventilation performance and subsequently became adapted for feeding is widely accepted. As jaws evolved, the morphology of the hyoid arch changed notably from that of a pharyngeal arch. Furthermore, hyoid arch morphology varies considerably among elasmobranch taxa and has been shown to be related to feeding style. The goal of this study is to determine whether the function (direction of movement or change in cavity cross‐section) of the hyoid arch is altered from that of the pharyngeal arch, and whether function is altered between ventilation, the basal behavior, and feeding, the derived behavior. Similar effects and associations of the pharyngeal arches by orientation to feeding or ventilation are also investigated. The kinematics of the hyoid and second pharyngeal arch during ventilation and feeding are quantified using sonomicrometry and hyomandibular angle measured in five shark and one skate species representing widely divergent hyomandibular morphologies. Hyoid and pharyngeal cavity width follows the same pattern of movement during ventilation; therefore the hyoid arch retains the ancestral function of the pharyngeal arches. The orientation of the hyomandibular cartilage appears to influence the pattern of arch movement during ventilation: anterior directed elements decrease in cavity width; laterally directed elements increase in cavity width; while posterior directed elements increase in cavity width or do not change; while cavity depth increases in all species. Hyoid and pharyngeal cavity width movement differs among the species during feeding and also appears to be related to hyoid arch orientation as well as feeding style. There appears to be a division between those species with hyomandibular angles less than 110° from those that are greater between feeding mode and hyoid cavity width movement. Primarily suction feeding species decrease hyoid cavity width whereas primarily bite feeding species increase hyoid cavity width during feeding while all species increase hyoid cavity depth.  相似文献   

7.
The selection pressures imposed by mate choice for species identity should impose strong stabilizing selection on traits that confer species identity to mates. Thus, we expect that such traits should show nonoverlapping distributions among closely related species, but show little to no variance among populations within a species. We tested these predictions by comparing levels of population differentiation in the sizes and shapes of male cerci (i.e., the clasper structures used for species identity during mating) of six Enallagma damselfly species. Cerci shapes were nonoverlapping among Enallagma species, and five of six Enallagma species showed no population variation across their entire species ranges. In contrast, cerci sizes overlapped among species and varied substantially among populations within species. These results, taken with previous studies, suggest that cerci shape is a primary feature used in species recognition used to discriminate conspecific from heterospecifics during mating.  相似文献   

8.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

9.
Some odontocetes possess unique features of the hyolingual apparatus that are involved in suction feeding. The hyoid bone and associated musculature generates rapid, piston‐like retraction, and depression of the hyoid and tongue. “Capture” suction feeders (e.g., Globicephala) use suction for capturing and swallowing prey. “Combination” feeders (i.e., Lagenorhynchus) use both raptorial feeding (to capture prey) and suction (to ingest prey). In “capture” suction feeders, features of the hyoid and skull have been attributed to creating suction (i.e., large surface area and mandibular bluntness). In addition to odontocetes, a mysticete, the gray whale (Eschrichtius robustus), is considered a benthic suction feeder. However, anatomical studies of purported suction‐feeding structures of the gray whale are lacking. In addition, few studies have utilized evolutionary approaches to understand the history of suction feeding in cetaceans. This study incorporates quantitative and qualitative hyoid and cranial data from 35 extant and 14 extinct cetacean species into a multivariate principal component analysis and comparative phylogenetic analyses. Conclusions from these analyses are that some commonly attributed features (i.e., ventral throat grooves and mandibular bluntness) and one principal component are significantly correlated with suction feeding. Finally, ancestral state reconstructions indicate that suction feeding likely evolved once, early in cetacean evolutionary history.  相似文献   

10.
This study addresses four questions in vertebrate functional morphology through a study of aquatic prey capture in ambystomatid salamanders: (1) How does the feeding mechanism of aquatic salamanders function as a biomechanical system? (2) How similar are the biomechanics of suction feeding in aquatic salamanders and ray-finned fishes? (3) What quantitative relationship does information extracted from electromyograms of striated muscles bear to kinematic patterns and animal performance? and (4) What are the major structural and functional patterns in the evolution of the lower vertebrate skull? During prey capture, larval ambystomatid salamanders display a kinematic pattern similar to that of other lower vertebrates, with peak gape occurring prior to both peak hyoid depression and peak cranial elevation. The depressor mandibulae, rectus cervicis, epaxialis, hypaxialis, and branchiohyoideus muscles are all active for 40–60 msec during the strike and overlap considerably in activity. The two divisions of the adductor mandibulae are active in a continuous burst for 110–130 msec, and the intermandibularis posterior and coracomandibularis are active in a double burst pattern. The antagonistic depressor mandibulae and adductor mandibulae internus become active within 0.2 msec of each other, but the two muscles show very different spike and amplitude patterns during their respective activity periods. Coefficients of variation for kinematic and most electromyographic recordings reach a minimum within a 10 msec time period, just after the mouth starts to open. Pressure within the buccal cavity during the strike reaches a minimum of ?25 mmHg, and minimum pressure occurs synchronously with maximum gill bar adduction. The gill bars (bearing gill rakers that interlock with rakers of adjacent arches) clearly function as a resistance within the oral cavity and restrict posterior water influx during mouth opening, creating a unidirectional flow during feeding. Durations of electromyographic activity alone are poor predictors of kinematic patterns. Analyses of spike amplitude explain an additional fraction of the variance in jaw kinematics, whereas the product of spike number and amplitude is the best statistical predictor of kinematic response variables. Larval ambystomatid salamanders retain the two primitive biomechanical systems for opening and closing the mouth present in nontetrapod vertebrates: elevation of the head by the epaxialis and depression of the mandible by the hyoid apparatus.  相似文献   

11.
The ontogeny of feeding behaviour was studied quantitatively in the tiger salamander, Ambystoma tigrinum , to elucidate the relative importance of morphological and environmental changes on form and function. High-speed films of prey capture provided data for a frame-by-frame analysis of seven kinematic parameters of feeding behaviour. By comparing underwater feeding of larval and metamorphosed individuals, the effect of morphological changes occurring at metamorphosis on the feeding kinematic pattern was determined. By comparing metamorphosed animals feeding in the water and on land, changes in feeding kinematics associated with the environmental transition (and thus the differing physical properties of water and air) were determined. Both univariate and multivariate analyses failed to demonstrate any differences between larval and metamorphosed aquatic feedings for seven kinematic variables. However, when individuals feed on land, a radical shift in hyoid kinematics was observed. In addition, multivariate analysis showed that terrestrial feedings differed from aquatic feedings in having longer duration head movements. The lack of a kinematic difference between larval and metamorphosed individuals feeding in the water indicates that the morphological changes occurring at metamorphosis do not impose any obligatory kinematic consequences. Rather, metamorphosed Ambystoma tigrinum acquire the ability to modulate their kinematic pattern depending on the environment.  相似文献   

12.
Acacia caven is a South American species which shows remarkable climate tolerance and ecological adaptability; as such, this species is suitable for colonizing anthropogenically degraded sites. This species is widely distributed, and six varieties have been described based on both morphological traits and molecular markers. Moreover, Aronson (1992) suggests that, for this species, geographical separation could be associated with ecological differentiation. In this study, amplified fragment length polymorphisms were used to study genetic variation within and among 15 populations of A. caven from five eco-regions of Argentina and to investigate (1) whether the varieties are genetically coherent, (2) whether the varieties correspond consistently to a single eco-region, (3) the proportion of the species diversity explained within and among varieties and eco-regions. Eight of the 225 bands appear to be under positive selection. The remaining 217 neutral loci showed a high percentage of polymorphism (99.1%). The estimates of genetic diversity H j were generally high. The F ST (0.315) was highly significant, providing evidence for genetic structure among populations. Hierarchical analysis of molecular variance indicated that variation among eco-regions was 8.2% and highly significant. The higher component of variance was found within populations (67.5%). STRUCTURE analysis suggested that the optimal number of K?=?11. The results showed that, in most cases, geographic separation is associated with ecological differentiation. Since differentiation of A. caven populations studied here in eco-regions was highly significant, sampling should include a large number of trees within populations as well as covering the wide ecological diversity of the species.  相似文献   

13.
Feeding behavior in the species of captive chondrichthyans is studied to clarify the functional mechanisms responsible for feeding ecology. Kinematics and pressure in the buccal, hyoid and pharyngeal regions were quantified in Squalus acanthias, Chiloscyllium plagiosum and Leucoraja erinacea using sonomicrometry and pressure transducers. Means and coefficients of variation were analyzed by species and by behavior to test for stereotypy and flexibility in the feeding mechanism. Several instances of mechanical stereotypy as well as flexibility were found in the feeding kinematics and pressure of the three chondrichthyan species. In general, Squalus acanthias shows more stereotyped feeding behavior than C. plagiosum and L. erinacea. Different aspects of feeding behavior stand out among the three species. Chiloscyllium plagiosum generates lowest pressures, S. acanthias achieves the greatest area changes, and L. erinacea has longer durations for manipulating prey. Capture events are functionally and behaviorally stereotyped while processing events are functionally and behaviorally flexible with the ability to use suction or compression to process the same food item. Squalus acanthias is a functional specialist and C. plagiosum is functionally a generalist, with both species exhibiting behavioral flexibility. Leucoraja erinacea is a functional and behavioral generalist. Using functional morphology to explain mechanical stereotypy and flexibility in the feeding behavior of three suction feeding chondrichthyan species has allowed a better understanding of specialist and generalist trophic behaviors.  相似文献   

14.
 Random amplified polymorphic DNA (RAPD) markers were used to assess levels and patterns of genetic diversity in Digitalis obscura L. (Scrophulariaceae), an outcrossing cardenolide-producing medicinal plant species. A total of 50 plants from six natural populations on the Iberian Peninsula were analysed by six arbitrarily chosen decamer primers resulting in 96 highly reproducible RAPD bands. To avoid bias in parameter estimation, analyses of population genetic structure were restricted to bands (35 of 96) whose observed frequencies were less than 1–3/n in each population. The analysis of molecular variance (AMOVA) with distances among individuals corrected for the dominant nature of RAPDs (genotypic analysis) showed that most of the variation (84.8%) occurred among individuals within populations, which is expected for an outcrossing organism. Of the remaining variance, 9.7% was attributed to differences between regions, and 5.5% for differences among populations within regions. Estimates of the Wright, Weir and Cockerham and Lynch and Milligan FST from null-allele frequencies corroborated AMOVA partitioning and provided significant evidence for population differentiation in D. obscura. A non-parametric test for the homogeneity of molecular variance (HOMOVA) also showed significant differences in the amount of genetic variability present in the six populations. UPGMA cluster analyses, based on Apostol genetic distance, revealed grouping of some geographically proximate populations. Nevertheless, a Mantel test did not give a significant correlation between geographic and genetic distances. This is the first report of the partitioning of genetic variability within and between populations of D. obscura and provides important baseline data for optimising sampling strategies and for conserving the genetic resources of this medicinal species. Received: 7 September 1998 / Accepted: 28 November 1998  相似文献   

15.
The feeding mechanisms of two labrid fishes (Cheilinus chlorurus and C. diagrammus: Labridae: Perciformes) are modeled using four-bar linkage theory from mechanical engineering. The actions of the feeding mechanisms are simulated by a computer program that uses morphometric data to calculate the geometry of mechanism structure. The predictions of three different four-bar linkages regarding the kinematics of feeding are compared to the movements observed through hign speed (200 fps) cinematography. A previously unidentified four-bar chain was found to be an accurate model of the mechanism by which upper jaw protrusion, maxillary rotation, and gape increase occur in Cheilinus. This mechanism involves the anterior jaws including the mandible, maxilla, premaxilla, palatine, and suspensorium. The accuracy of two previously described four-bar linkages was also tested by comparison of model predictions and film results. The opercular linkage proposed by Anker ('74) as a mechanism of jaw depression via opercular levation was found to be a poor predictor of feeding movements. This four-bar chain involves the opercle, suspensorium, interopercle, and mandible. Muller ('87) proposed a mechanism of hyoid depression involving cranial elevation due to epaxial muscle contraction as input motion The links in this mechanism include the neurocranium and hyomandibula, hyoid, sternohyoideus muscle, and pectoral girdle. This model was an accurate predictor of hyoid depression in Cheilinus when simultaneous cranial elevation and sternohyoideus contraction were simulated. Quantitative kinematic models involve simplifying assumptions when applied to complex musculoskeletal systems, but such models have a wide range of applications to vertebrate functional morphology.  相似文献   

16.
M. W. Westneat 《Zoomorphology》1994,114(2):103-118
Summary The feeding mechanisms of four species of the teleostean family Labridae (Cheilinus fasciatus, C. trilobatus, Oxycheilinus bimaculatus, and O. unifasciatus) were modeled using four-bar linkage theory from mechanical engineering. The predictions of four-bar linkage models regarding the kinematics of feeding were compared to the movements observed with high speed cinematography (200 frames/s). A four-bar linkage was an accurate model of the mechanism by which upper jaw protrusion, maxillary rotation, and gape increase occur in each species. A four-bar mechanism of hyoid depression was an accurate predictor of hyoid depression when simultaneous cranial elevation and sternohyoideus contraction were simulated. Morphometrics of the linkage systems of the jaws and hyoid were collected for 12 labrid species. These data were used to calculate the transmission of force and motion through the musculoskeletal linkages. Several measures of mechanical advantage and displacement advantage were compared, including both traditional lever ratios and transmission coefficients of four-bar linkages. Alternative designs of the feeding mechanisms maximize force or velocity for the capture of different prey types. High velocity transmission of both the jaw and hyoid systems is characteristic of those species that feed on evasive prey, whereas species that feed on benthic invertebrates favor increased force transmission in both systems. Quantitative models of biomechanical systems supply criteria for functionally relevant morphometrics, and aid in calculating the capacity for transmission of force and velocity in musculoskeletal systems.  相似文献   

17.
We document phenotypic and genetic variation within and among populations of the seed heteromorphic species Heterosperma pinnatum Cav. (Compositae) in the production of seed morphs and in a variety of life-history and morphological characteristics that might be correlated with seed and head traits. Each trait is found to have significant genetic variance in most or, usually, all populations. Significant among-population genetic variation exists for all traits except number of achenes per head and seedling shape, although some traits have much less genetic variation among than within populations. Number and percentage of intermediate achenes per head, total number of achenes per head, and lengths of central and peripheral achenes had little among-population genetic variation compared to within-population variation. Most traits had slightly less genetic variation among than within populations; however, some traits (percentage of central achenes, length of awns, date that the first flowering head opened, date that the first fruiting head opened, and death date) had more among-population genetic variation. The proportions of achene morphs produced had high broad-sense heritabilities and high among-population genetic variance, except in the case of intermediate achenes. All phenological variables had high among-population genetic variation. Within-population heritabilities were high for dates of first flowering head and fruiting head but low for death date and reproductive interval. Family and population means measured in the greenhouse for traits having high broad-sense heritability or among-population genetic variance were closely correlated with field means for the corresponding families or populations. The amounts of phenotypic variation were similar for traits that were measured in both the field and the greenhouse. These lines of evidence suggest that greenhouse results provide reasonable estimates of genetic variation in the field for this species. Numerous studies have reported variation in the proportion of seed morphs for different heteromorphic-seeded species and have discussed adaptive scenarios for the evolution of seed proportions; however, our investigation is one of only a few that have documented the amount of phenotypic and genetic variation within and among populations.  相似文献   

18.
Synopsis The feeding; habits of a group of tropical herbivorous rock-dwelling cichlid fishes from Lake Malawi, Africa, are investigated using stomach content analyses. The various species fed selectively on the periphyton of the rocky shores. Blue-green alga of the genus Calothrix was the most common item ingested by the group. Diatoms (Chrysophyta) also were abundant food items. Discriminant analysis showed that dietary items were good variables to identify species. Interspecific dietary differences showed a continuum from those species feeding primarily on Calothrix to those feeding primarily on diatoms. Algal resources exhibit distinct patterns of spatial variation. Diet was correlated with foraging behavior and trophic morphology. Interspecific differences in diet could possibly facilitate ecological coexistence among various species. Such coexistence would contribute to the maintenance of the high diversity fish faunas characteristic of the Great Rift Lakes of Africa.  相似文献   

19.
In the present study we evaluated the putative cases of sympatric speciation in the genus Herichthys by studying the variation in head shape using principal component analysis, phylomorphospace and reconstructions of the ancestral states of feeding preferences. Herichthys includes both allopatric and sympatric sister species, as well as sympatric unrelated species and thus offers great potential for evolutionary studies of putatively sympatric speciation. Herichthys is the northernmost group of cichlids in America and one of the most ecologically disparate genera within Middle American cichlids. Fifteen anatomical points were recorded on the heads of 293 specimens of the 11 species recognized within the genus. The results show that in spite of having wide variation in consumed diets, most species of Herichthys are close in morphospace. However, morphological variation was great among the two pairs of sympatric sister species in agreement with the suggested sympatric model of speciation.  相似文献   

20.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference.To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics.Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding).Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号