首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for natural selection on seven bill and body characters is examined in the two bill morphs of the African estrildid finch Pyrenestes ostrinus. Two regression methods are used in examining natural selection in association with survivorship: a parametric (Lande and Arnold, 1983) and a non-parametric (Schluter, 1988) method. Selection was estimated in adult males, females and juveniles over a four-year period in a population in south-central Cameroon. Selection was common among groups but patterns differed and depended on the method used in detecting selection. The non-parametric method revealed evidence for disruptive selection occurring on bill width and is explained within the context of known feeding efficiencies and the hardness of important seeds in finch diets. Directional selection was common on bill characters in all groups, but infrequent on other characters. There was no evidence of selection on generalized size or shape characters. Selection on bill characters was common across groups despite low annual variation in rainfall. This contrasts with studies of Galápagos finches in which selection is frequently associated with dramatic changes in food supply caused by high variance in annual rainfall. Patterns of selection on bill traits in P. ostrinus also differ from those in song sparrows and Galápagos finches by exhibiting evidence for natural selection on all bill dimensions.  相似文献   

2.
One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin''s finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin''s finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin''s finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin''s finches or whose studies were inspired by research on Darwin''s finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience.  相似文献   

3.
The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human‐processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.  相似文献   

4.
Movement patterns and habitat selection of animals have important implications for ecology and evolution. Darwin''s finches are a classic model system for ecological and evolutionary studies, yet their spatial ecology remains poorly studied. We tagged and radio‐tracked five (three females, two males) medium ground finches (Geospiza fortis) to examine the feasibility of telemetry for understanding their movement and habitat use. Based on 143 locations collected during a 3‐week period, we analyzed for the first time home‐range size and habitat selection patterns of finches at El Garrapatero, an arid coastal ecosystem on Santa Cruz Island (Galápagos). The average 95% home range and 50% core area for G. fortis in the breeding season was 20.54 ha ± 4.04 ha SE and 4.03 ha ± 1.11 ha SE, respectively. For most of the finches, their home range covered a diverse set of habitats. Three finches positively selected the dry‐forest habitat, while the other habitats seemed to be either negatively selected or simply neglected by the finches. In addition, we noted a communal roosting behavior in an area close to the ocean, where the vegetation is greener and denser than the more inland dry‐forest vegetation. We show that telemetry on Darwin''s finches provides valuable data to understand the movement ecology of the species. Based on our results, we propose a series of questions about the ecology and evolution of Darwin''s finches that can be addressed using telemetry.  相似文献   

5.
Microevolution of quantitative traits in the wild can be predicted from a knowledge of selection and genetic parameters. Testing the predictions requires measurement of the offspring of the selected group, a requirement that is difficult to meet. We present the results of a study of Darwin's finches on the Galápagos island of Daphne Major where this requirement is met. The study demonstrates microevolutionary consequences of natural selection.  相似文献   

6.
Beak shape in Darwin's ground finches (Geospiza) is emblematic of natural selection and adaptive radiation, yet our understanding of the genetic basis of beak shape variation, and thus the genetic target of natural selection, is still evolving. Here we reveal the genomic architecture of beak shape variation using genomewide comparisons of four closely related and hybridizing species across 13 islands subject to parallel natural selection. Pairwise contrasts among species were used to identify a large number of genomic loci that are consistently related to species differences across a complex landscape. These loci are associated with hundreds of genes that have enriched GO categories significantly associated with development. One genomic region of particular interest is a section of Chromosome 1A with many candidate genes and increased linkage. The distinct, pointed beak shape of the cactus finch is linked to an excess of intermediate frequency alleles and increased heterozygosity in significant SNPs, but not across the rest of the genome. Alleles associated with pointier beaks among species were associated with pointier‐beaked populations within each species, thus establishing a common basis for natural selection, species divergence and adaptive radiation. The adaptive genomic landscape for Darwin's finches mirrors theoretical expectations based on morphological variation. The implication that a large number of genes are actively maintained to facilitate beak variation across parallel populations with documented interspecies admixture challenges our understanding of evolutionary processes in the wild.  相似文献   

7.
Darwin''s finches have radiated from a common ancestor into 14 descendent species, each specializing on distinct food resources and evolving divergent beak forms. Beak morphology in the ground finches (Geospiza) has been shown to evolve via natural selection in response to variation in food type, food availability and interspecific competition for food. From a mechanical perspective, however, beak size and shape are only indirectly related to birds'' abilities to crack seeds, and beak form is hypothesized to evolve mainly under selection for fracture avoidance. Here, we test the fracture-avoidance hypothesis using finite-element modelling. We find that across species, mechanical loading is similar and approaches reported values of bone strength, thus suggesting pervasive selection on fracture avoidance. Additionally, deep and wide beaks are better suited for dissipating stress than are more elongate beaks when scaled to common sizes and loadings. Our results illustrate that deep and wide beaks in ground finches enable reduction of areas with high stress and peak stress magnitudes, allowing birds to crack hard seeds while limiting the risk of beak failure. These results may explain strong selection on beak depth and width in natural populations of Darwin''s finches.  相似文献   

8.
Darwin''s finches are a classic example of adaptive radiation, a process by which multiple ecologically distinct species rapidly evolve from a single ancestor. Such evolutionary diversification is typically explained by adaptation to new ecological opportunities. However, the ecological diversification of Darwin''s finches following their dispersal to Galápagos was not matched on the same archipelago by other lineages of colonizing land birds, which diversified very little in terms of both species number and morphology. To better understand the causes underlying the extraordinary variation in Darwin''s finches, we analyze the evolutionary dynamics of speciation and trait diversification in Thraupidae, including Coerebinae (Darwin''s finches and relatives) and, their closely related clade, Sporophilinae. For all traits, we observe an early pulse of speciation and morphological diversification followed by prolonged periods of slower steady‐state rates of change. The primary exception is the apparent recent increase in diversification rate in Darwin''s finches coupled with highly variable beak morphology, a potential key factor explaining this adaptive radiation. Our observations illustrate how the exploitation of ecological opportunity by contrasting means can produce clades with similarly high diversification rate yet strikingly different degrees of ecological and morphological differentiation.  相似文献   

9.
The most extensively studied group of Darwin's finches is the genus Geospiza, the ground finches, and yet little is known about the evolutionary history and genetic relationships of these birds. Studies using either allozyme or morphological data have been unable to resolve relationships between the six species and numerous populations of ground finches. In this paper we report the results of a study using mitochondrial control region and nuclear internal transcribed spacer (ITS) 1 sequence data. The differentiation of the ground finch species based on morphological data is not reflected in either mitochondrial or nuclear DNA sequence phylogenies. Furthermore, there is little concordance between the mitochondrial haplotypes and ITS alleles found within individuals. We suggest that the absence of species-specific lineages can be attributed to ongoing hybridization involving all six species of Geospiza. There are no long term selective pressures against hybridization within this genus, and therefore a genetically homogenous genus may be maintained indefinitely. Hybridization has apparently played a role in the adaptive radiation of Darwin's finches.  相似文献   

10.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

11.
Darwin''s finches are a classic example of adaptive radiation. The ecological diversity of the Galápagos in part explains that radiation, but the fact that other founder species did not radiate suggests that other factors are also important. One hypothesis attempting to identify the extra factor is the flexible stem hypothesis, connecting individual adaptability to species richness. According to this hypothesis, the ancestral finches were flexible and therefore able to adapt to the new and harsh environment they encountered by exploiting new food types and developing new foraging techniques. Phenotypic variation was initially mediated by learning, but genetic accommodation entrenched differences and supplemented them with morphological adaptations. This process subsequently led to diversification and speciation of the Darwin''s finches. Their current behaviour is consistent with this hypothesis as these birds use unusual resources by extraordinary means. In this paper, we identify cognitive capacities on which flexibility and innovation depend. The flexible stem hypothesis predicts that we will find high levels of these capacities in all species of Darwin''s finches (not just those using innovative techniques). Here, we test that prediction, and find that while most of our data are in line with the flexible stem hypothesis, some are in tension with it.  相似文献   

12.
The Darwin of pangenesis is very much another Darwin. Pangenesis is Darwin's comprehensive theory of generation, his theory about all sexual and asexual modes of reproduction and growth. He never explicitly integrated pangenesis with his theory of natural selection. He first formulated pangenesis in the 1840s and integrated it with the physiology, including the cytology, of that era. It was, therefore, not consilient with the newer cytology of the 1860s when he published it in 1868. By reflecting on the role of pangenesis in Darwin's life and work, we can learn to take a wider view of his most general theorising about animal and plant life.  相似文献   

13.
Allele length variation at 16 microsatellite loci was used to estimate the phylogeny of 13 out of the 14 species of Darwin''s finches. The resulting topology was similar to previous phylogenies based on morphological and allozyme variation. An unexpected result was that genetic divergence among Galápagos Island populations of the warbler finch (Certhidea olivacea) predates the radiation of all other Darwin''s finches. This deep split is surprising in view of the relatively weak morphological differentiation among Certhidea populations and supports the hypothesis that the ancestor of all Darwin''s finches was phenotypically similar to Certhidea. The results also resolve a biogeographical problem: the Cocos Island finch evolved after the Galápagos finch radiation was under way, supporting the hypothesis that this distant island was colonized from the Galápagos Islands. Monophyletic relationships are supported for both major groups, the ground finches (Geospiza) and the tree finches (Camarhynchus and Cactospiza), although the vegetarian finch (Platyspiza crassirostris) appears to have diverged prior to the separation of ground and tree finches. These results demonstrate the use of microsatellites for reconstructing phylogenies of closely related species and interpreting their evolutionary and biogeographic histories.  相似文献   

14.

Background

Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite''s impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin''s finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season.

Methodology/Principal Findings

We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging.

Conclusions/Significance

Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin''s finches. These data can help in the design of management plans for controlling P. downsi in Darwin''s finch breeding populations.  相似文献   

15.

Background

Invasive parasites are a major threat to island populations of animals. Darwin''s finches of the Galápagos Islands are under attack by introduced pox virus (Poxvirus avium) and nest flies (Philornis downsi). We developed assays for parasite-specific antibody responses in Darwin''s finches (Geospiza fortis), to test for relationships between adaptive immune responses to novel parasites and spatial-temporal variation in the occurrence of parasite pressure among G. fortis populations.

Methodology/Principal Findings

We developed enzyme-linked immunosorbent assays (ELISAs) for the presence of antibodies in the serum of Darwin''s finches specific to pox virus or Philornis proteins. We compared antibody levels between bird populations with and without evidence of pox infection (visible lesions), and among birds sampled before nesting (prior to nest-fly exposure) versus during nesting (with fly exposure). Birds from the Pox-positive population had higher levels of pox-binding antibodies. Philornis-binding antibody levels were higher in birds sampled during nesting. Female birds, which occupy the nest, had higher Philornis-binding antibody levels than males. The study was limited by an inability to confirm pox exposure independent of obvious lesions. However, the lasting effects of pox infection (e.g., scarring and lost digits) were expected to be reliable indicators of prior pox infection.

Conclusions/Significance

This is the first demonstration, to our knowledge, of parasite-specific antibody responses to multiple classes of parasites in a wild population of birds. Darwin''s finches initiated acquired immune responses to novel parasites. Our study has vital implications for invasion biology and ecological immunology. The adaptive immune response of Darwin''s finches may help combat the negative effects of parasitism. Alternatively, the physiological cost of mounting such a response could outweigh any benefits, accelerating population decline. Tests of the fitness implications of parasite-specific immune responses in Darwin''s finches are urgently needed.  相似文献   

16.
Darwin's finches are an iconic case of adaptive radiation. The size and shape of their beaks are key adaptive traits related to trophic niche that vary among species and evolve rapidly when the food supply changes. Building on recent studies, a paper in this issue of Molecular Ecology (Chaves et al. 2016 ) investigates the genomic basis of beak size variation in sympatric populations of three species of ground finch (Geospiza) by performing a Genome‐wide association study using RAD‐seq data. The authors find that variation in a small number of markers can explain a substantial proportion of variation in beak size. Some of these markers are in genomic regions that have previously been implicated in beak size variation in Darwin's finches, whereas other markers have not, suggesting both conservation and divergence in the genetic basis of morphological evolution. Overall, the study confirms that loci of large effect are involved in beak size variation, which helps to explain the high heritability and rapid response to selection of this trait. The independent identification of regions containing HMGA2 and DLK1 loci in a GWAS makes them prime targets for functional studies. The study also shows that under the right conditions, RAD‐seq can be a viable alternative to genome sequencing for GWAS in wild vertebrate populations.  相似文献   

17.
Morphological consequences of hybridization were studied in a group of three interbreeding species of Darwin's finches on the small Galápagos island of Daphne Major in the inclusive years 1976 to 1992. Geospiza fortis bred with G. scandens and G. fuliginosa. Although interbreeding was always rare (< 5%), sufficient samples of measurements of hybrids and backcrosses were accumulated for analysis. Five beak and body dimensions and mass were measured, and from these two synthetic (principal-component) traits were constructed. All traits were heritable in two of the interbreeding species (G. fuliginosa were too rare to be analyzed) and in the combined samples of F, hybrids and backcrosses to G. fortis. In agreement with expectations from a model of polygenic inheritance, hybrid and backcross classes were generally phenotypically intermediate between the breeding groups that had produced them. Hybridization increased additive genetic and environmental variances, increased heritabilities to a moderate extent, and generally strengthened phenotypic and genetic correlations. New additive genetic variance introduced by hybridization is estimated to be two to three orders of magnitude greater than that introduced by mutation. Enhanced variation facilitates directional evolutionary change, subject to constraints arising from genetic correlations between characters. The Darwin's finch data suggest that these constraints become stronger when species with similar proportions hybridize, but some become weaker when the interbreeding species have different allometries. This latter effect of hybridization, together with an enhancement of genetic variation, facilitates evolutionary change in a new direction.  相似文献   

18.
Island populations harbour a comparatively species‐poor pathogen community, often resulting in naïve host species that experience compromised immunity when faced with novel diseases. Over 95% of the Galápagos avifauna have survived 400 years of human settlement, yet currently face threats due to introduced diseases such as avian poxvirus. On Hawaii, declining populations of birds and even some extinctions have been attributed to avian poxvirus, and hence, identifying the prevalence and fitness costs of avian poxvirus on the Galápagos is a conservation priority. Surveys of avian poxvirus in Darwin's finches on Santa Cruz Island between 2000 and 2004 found a 33% annual increase in the prevalence of pox lesions in ground finches. Comparisons of pox prevalence on three islands (Santa Cruz, Floreana, and Isabela) were made in 2004, which indicated significant variation in pox prevalence across islands (Isabela>Santa Cruz>Floreana). Darwin's finch species were found to be differentially affected by poxvirus, with a higher prevalence in ground finches than in tree finches. There was a significant effect of habitat, even within species, with higher prevalence in the lowlands than highlands. Pox prevalence was not correlated with sex or body condition. However, male small ground finches Geospiza fuliginosa with evidence of pox were less likely to have a mate (16.6% paired) compared with males without pox (77% paired), indicating fitness costs associated with poxvirus infection.  相似文献   

19.
The consequences of hybridization for biodiversity depend on the specific ecological and evolutionary context in which it occurs. Understanding patterns of gene flow among hybridizing species is crucial for determining the evolutionary trajectories of species assemblages. The recently discovered hybridization between two species of Darwin's tree finches (Camarhynchus parvulus and C. pauper) on Floreana Island, Galápagos, presents an exciting opportunity to investigate the mechanisms causing hybridization and its potential evolutionary consequences under conditions of recent habitat disturbance and the introduction of invasive pathogens. In this study, we combine morphological and genetic analysis with pairing observations to explore the extent, direction and drivers of hybridization and to test whether hybridization patterns are a result of asymmetrical pairing preference driven by females of the rarer species (C. pauper). We found asymmetrical introgression from the critically endangered, larger‐bodied C. pauper to the common, smaller‐bodied C. parvulus, which was associated with a lack of selection against heterospecific males by C. pauper females. Examination of pairing data showed that C. parvulus females paired assortatively, whereas C. pauper females showed no such pattern. This study shows how sex‐specific drivers can determine the direction of gene flow in hybridizing species. Furthermore, our results suggest the existence of a hybrid swarm comprised of C. parvulus and hybrid birds. We discuss the influence of interspecific abundance differences and susceptibility to the invasive parasite Philornis downsi on the observed hybridization and recommend that the conservation of this iconic species group should be managed jointly rather than species‐specific.  相似文献   

20.
Darwin's fecundity advantage model is often cited as the cause of female biased size dimorphism, however, the empirical studies of lifetime selection on male and female body size that would be required to demonstrate this are few. As a component of a study relating sexual size dimorphism to lifetime selection in natural populations of the female size-biased waterstrider Aquarius remigis (Hemiptera: Gerridae), we estimated coefficients for daily fecundity selection, longevity selection, and lifetime fecundity selection acting on female body size and components of body size for two consecutive generations. Daily fecundity was estimated using females confined in field enclosures and reproductive survival was estimated by twice-weekly recaptures. We found that daily fecundity selection favored females with longer total length through direct selection acting on abdomen length. Longevity selection favored females with smaller total length. When daily fecundity and reproductive longevity were combined to estimate lifetime fecundity we found significant balancing selection acting on total length in both years. The relationship between daily fecundity and reproductive longevity also reveals a significant cost of reproduction in one of two years. We relate these selection estimates to previous estimates of sexual selection on male body size and consider the relationship between contemporary selection and sexual size dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号