首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Feig M  Pettitt BM 《Biopolymers》1998,48(4):199-209
Recent results from molecular dynamics (MD) simulations on hydration of DNA with respect to conformation are reviewed and compared with experimental data. MD simulations of explicit solvent around DNA can now give a detailed model of DNA that not only matches well with the experimental data but provides additional insight beyond current experimental limitations. Such simulation results are analyzed with a focus on differential hydration properties between A- and B-DNA and between C/G and A/T base pairs. The extent of hydration is determined from the number of waters in the primary shell and compared to experimental numbers from different measurements. High-resolution hydration patterns around the whole DNA are shown and correlated with the conformations. The role of ions associating with DNA is discussed with respect to changes in the hydration structure correlating with DNA conformation.  相似文献   

2.
Detailed examination of the structure of the B-DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G, obtained by single-crystal X-ray analysis (Drew et al., 1981), reveals that the local helix parameters, twist, tilt and roll, are much more strongly influenced by base sequence than by crystal packing or any other external forces. The central EcoRI restriction endonuclease recognition site, G-A-A-T-T-C, is a B helix with an average of 9.8 base-pairs per turn. It is flanked on either side by single-base-pair steps having aspects of an A-like helix character. The dodecamer structure suggests several general principles, whose validity must be tested by other B-DNA analyses. (1) When an external bending moment is applied to a B-DNA double helix, it bends smoothly, without kinks or breaks, and with relatively little effect on local helix parameters. (2) Purine-3′,5′-pyrimidine steps open their base planes towards the major groove, pyrimidine-purine steps open toward the minor groove, and homopolymer (Pur-Pur, Pyr-Pyr) steps resist rolling in either direction. This behavior is related to the preference of pyrimidines for more negative glycosyl torsion angles. (3) CpG steps have smaller helical twist angles than do GpC, as though in compensation for their smaller intrinsic base overlap. Data on A-T steps are insufficient for generalization. (4) G.C base-pairs have smaller propellor twist than A · T, and this arises mainly from interstrand base overlap rather than the presence of the third hydrogen bond. (5) DNAase I cuts preferentially at positions of high helical twist, perhaps because of increased exposure of the backbone to attack. The correlation of the digestion patterns in solution and helical twist in the crystal argues for the essential identity of the helix structure in the two environments. (6) In the two places where the sequence TpCpG occurs, the C slips from under T in order to stack more efficiently over G. At the paired bases of this CpG step, the G and C are tilted so the angle between base planes is splayed out to the outside of the helix. This TpC is the most favored cutting site for DNAase I by a factor of 4.5 (Lomonossoff et al., 1981). (7) The EcoRI restriction endonuclease and methylase both appear to prefer a cutting site of the type purine-purine-A-T-T-pyrimidine, involving two adjacent homopolymer triplets, and this may be a consequence of the relative stiffness of homopolymer base-stacking observed in the dodecamer.  相似文献   

3.
Study of the effects of pressure on macromolecular structure improves our understanding of the forces governing structure, provides details on the relevance of cavities and packing in structure, increases our understanding of hydration and provides a basis to understand the biology of high-pressure organisms. A study of DNA, in particular, helps us to understand how pressure can affect gene activity. Here we present the first high-resolution experimental study of B-DNA structure at high pressure, using NMR data acquired at pressures up to 200 MPa (2 kbar). The structure of DNA compresses very little, but is distorted so as to widen the minor groove, and to compress hydrogen bonds, with AT pairs compressing more than GC pairs. The minor groove changes are suggested to lead to a compression of the hydration water in the minor groove.  相似文献   

4.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

5.
A search for a left-handed double helix model for B-DNA fibers has been undertaken. The model has to present good stereochemistry and also to be in agreement with X-ray and infrared data. Dihedral angles as well as atomic coordinates and calculated intensities curves are given for the best model obtained. Comparison with experimental results shows that this model must be rejected as a candidate for the representation of B-DNA fibers.  相似文献   

6.
We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane‐spanning α‐helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six‐helix bundle at the tip of the protomer is conserved. The six‐helix bundle of NhaA contains two partially unwound α‐helices thought to harbour the ion‐translocation site, which is thus similar in NhaP1. A model of NhaP1 based on detailed sequence comparison and the NhaA structure was fitted to the 7 Å map. The additional N‐terminal helix 1 of NhaP1, which appears to be an uncleaved signal sequence, is located near the dimer interface. Similar sequences are present in many eukaryotic homologues of NhaP1, including NHE1. Although fully folded and able to dimerize, NhaP1 constructs without helix 1 are inactive. Possible reasons are investigated and discussed.  相似文献   

7.
8.
Tan ZJ  Chen SJ 《Biophysical journal》2007,92(10):3615-3632
A recently developed tightly bound ion model can account for the correlation and fluctuation (i.e., different binding modes) of bound ions. However, the model cannot treat mixed ion solutions, which are physiologically relevant and biologically significant, and the model was based on B-DNA helices and thus cannot directly treat RNA helices. In the present study, we investigate the effects of ion correlation and fluctuation on the thermodynamic stability of finite length RNA helices immersed in a mixed solution of monovalent and divalent ions. Experimental comparisons demonstrate that the model gives improved predictions over the Poisson-Boltzmann theory, which has been found to underestimate the roles of multivalent ions such as Mg2+ in stabilizing DNA and RNA helices. The tightly bound ion model makes quantitative predictions on how the Na+-Mg2+ competition determines helix stability and its helix length-dependence. In addition, the model gives empirical formulas for the thermodynamic parameters as functions of Na+/Mg2+ concentrations and helix length. Such formulas can be quite useful for practical applications.  相似文献   

9.
A detailed picture of hydration and counterion location in the B-DNA duplex d(GCGAATTCG) is presented. Detailed data have been obtained by single crystal x-ray diffraction at atomic resolution (0.89 A) in the presence of Mg(2+). The latter is the highest resolution ever obtained for a B-DNA oligonucleotide. Minor groove hydration is compared with that found in the Na(+) and Ca(2+) crystal forms of the related dodecamer d(CGCGAATTCGCG). High resolution data (1.45 A) of the Ca(2+) form obtained in our laboratory are used for that purpose. The central GAATTC has a very stable hydration spine identical in all cases, independent of duplex length and crystallization conditions (counterions, space group). However, the organization of the water molecules (tertiary and quaternary layers) associated with the central spine vary in each case.  相似文献   

10.
Influence of sequence on the conformation of the B-DNA helix.   总被引:2,自引:1,他引:1  
We have tried to ascertain whether the variability found in the conformational features of the 10 base steps in B-DNA is mainly due to the flanking sequences or to interactions with the environment. From an analysis of the twist parameter of the base-pair steps available from crystals of oligonucleotides and protein/oligonucleotide complexes, we conclude that in most cases the flanking sequences show little influence: the conformation of a DNA region results from the combination of the independent intrinsic features of each base step (average conformation and intrinsic variability), modulated by their interactions with the environment. Only in some cases (YR steps, in particular CG and CA/TG) does it appear that flanking sequences have an influence on the conformation of the central base step. The values obtained allow an approximation to the parameters expected for repetitive DNA sequences. In particular, it is found that poly[d(AG/CT)] should have a strongly alternating conformation, in agreement with recently reported oligonucleotide structures.  相似文献   

11.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

12.
13.
ATP-driven exchange of Na+ and K+ ions by Streptococcus faecalis   总被引:8,自引:0,他引:8  
We describe the characterization of KtrII, a novel potassium transport system of Streptococcus faecalis, first discovered by H. Kobayashi [1982) J. Bacteriol. 150, 506-511). KtrII requires sodium ions and mediates the stoichiometric exchange of internal Na+ for external K+. Potassium accumulation is not energized by the electrochemical potentials of either H+ or Na+; the energy source is probably ATP. Two lines of evidence indicate that KtrII is a manifestation of the sodium-stimulated ATPase reported earlier (Heefner, D. L., and Harold, F. M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2798-2802). (i) Mutants that lack the ATPase also lack KtrII, and revertants recover both in parallel. (ii) KtrII and the Na+-ATPase are induced in parallel when cells are grown on media rich in sodium, particularly under conditions that limit the generation of a proton potential. KtrII is not induced in response to K+ deprivation. We propose that the Na+-ATPase exchanges Na+ for K+ ions.  相似文献   

14.
15.
Analysis of local helix geometry in three B-DNA decamers and eight dodecamers   总被引:16,自引:0,他引:16  
Local variations in B-DNA helix structure are compared among three decamers and eight dodecamers, which contain examples of all ten base-pair step types. All pairwise combinations of helix parameters are compared by linear regression analysis, in a search for internal relationships as well as correlations with base sequence. The primary conclusions are: (1) Three-center hydrogen bonds between base-pairs occur frequently in the major groove at C-C, C-A, A-A and A-C steps, but are less convincing at C-C and C-T steps in the minor groove. The requirements for large base-pair propeller are (1) that the base-pair should be A.T rather than G.C, and (2) that it be involved in a major groove three-center hydrogen bond with the following base-pair. Either condition alone is insufficient. Hence, a large propeller is expected at the leading base-pair of A-A and A-C steps, but not at A-T, T-A, C-A or C-C steps. (2) A systematic and quantitative linkage exists between helix variables twist, rise, cup and roll, of such strength that the rise between base-pairs can hardly be described as an independent variable at all. Two typical patterns of behavior are observed at steps from one base-pair to the next: high twist profile (HTP), characterized by high twist, low rise, positive cup and negative roll, and low twist profile (LTP), marked by low twist, high rise; negative cup and positive roll. Examples of HTP are steps G-C, G-A and Y-C-A-R, where Y is pyrimidine and R is purine. Examples of LTP steps are C-G, G-G, A-G and C-A steps other than Y-C-A-R. (3) The minor groove is especially narrow across the two base-pairs of the following steps: A-T, T-A, A-A and G-A. (4) In general, base step geometry cannot be correlated solely with the bases that define the step in question; the two flanking steps also must be taken into account. Hence, local helix structure must be studied in the context, not of two base-pairs: A-B, but of four: x-A-B-y. Calladine's rules, although too simple in detail, were correct in defining the length of sequence over which a given perturbation is expressed. Whereas ten different two-base steps are possible, allowing for the identity of complementary sequences, there are 136 different four-base steps. Only 33 of these 136 four-base steps are represented in the decamer and dodecamer structures solved to date, and hence it is premature to try to set up detailed structural algorithms. (5) The sugar-phosphate backbone chains of B-DNA place strong limits on sequence-induced structural variation, damping down most variables within four or five base-pairs, and preventing purine-purine anti-anti mismatches from causing bulges in the double helix. Hence, although short-range sequence-induced deformations (or deformability) are observed, long-range deformations propagated down the helix are not to be expected.  相似文献   

16.
We present here a model for the prediction of helix twist angles in B-DNA, a model composed of a collection of torsional springs. Statistically averaged conformational energy calculations show that, for a specified basepair step, the basepair-basepair conformational energy is quadratically dependent on the helix twist angle, so the calculations provide the spring parameters for the basepair-basepair interactions. Torsional springs can also be used to model the effects of the backbone on the helix twist, and the parameters for those springs are derived by fitting the model to experimental data. The model predicts a macroscopic torsional stiffness and a longitudinal compressibility (Young's modulus) which are both in good agreement with experiment. One biological consequence of the model is examined, the sequence specificity of the Eco RI restriction endonuclease, and it is shown that the discriminatory power of the enzyme receives a substantial contribution from the energetic cost of torsional deformations of the DNA when wrong sequences are forced into the enzyme binding site.  相似文献   

17.
Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.  相似文献   

18.
The permeation of Na+ through gramicidin A channels shows a simple saturation with increasing Na+ concentration that can be described by two different models. The first model assumes that one Na+ binds to the channel with high affinity (approximately 30 M-1) and that conduction occurs by a 'knock-on' mechanism requiring double occupancy of the channel; the other model assumes that Na+ binding is of low affinity (less than 1 M-1), and that double occupancy of the channel is rare. NMR measurements have shown tight Na+ binding, favoring the first model, but measurements of flux ratios and water transport support the second model. We present here a relatively model-independent measurement of the dwell time of Na+ inside the channel, in which we characterize the fluctuations in H+ current through the channel induced by 'block' from the more slowly permeating Na+ ions. The mean Na+ dwell time inside the channel is estimated to be approximately 10 ns at a membrane potential of 200 mV. This result is inconsistent with tight Na+ binding, thus favoring the second model.  相似文献   

19.
An aspartic residue (Asp55) located in the putative transmembrane alpha-helix II of the melibiose(mel) permease of Escherichia coli was replaced by Cys using oligonucleotide-directed, site-specific mutagenesis. Although D55C permease is expressed at 0.7 times the level of wild type permease, the mutated mel permease loses the ability to catalyse Na+ or H+ coupled melibiose transport against a concentration gradient. (3H) p-nitrophenyl-alpha-D-galactoside (NPG) binding studies demonstrated that D55C permease binds the sugar co-substrate but Na+ (or Li+) ions do no longer enhance the affinity of D55C permease for the co-transported sugar. In addition sugar binding on D55C permease but not on wild type permease is inactivated by sulfhydryl reagents and the inhibition protected by an excess of melibiose. These observations suggest 1) that the negatively-charged Asp55 residue, expected to be within the membrane embedded domain near the NH2 extremity of mel permease, is in or near the Na(+)-binding site and 2) that the cation and sugar binding sites may be overlapping.  相似文献   

20.
Partially esterified polygalacturonic acid is the main component of pectin in higher plants. The carboxylic groups and their methyl esters markedly affect the ability of the pectin molecules to bind oppositely charged ions and to form gels. In order to make a contribution to the understanding of the mechanisms which regulate the ionic transfer at the soil–root interface and in the apoplast, we report the results of a set of molecular dynamics experiments in which the interactions of four fully deprotonated fragments of polygalacturonic acid, each counting 12 units, 300 water molecules and 48 or 24 Na+ and Ca2+ ions were studied.We observed the formation of Ca2+ bridges between the polygalacturonate chains. The forces driving the aggregation processes are characterized by the formation of strong coulombic interactions between the metal ions and the carboxylate groups. The results are consistent with experiment evidence of the formation of Ca–polygalacturonate organized gels. The Ca–polygalacturonate complex exhibits a lower energy compared to that of Na–polygalacturonate. The ratio of the Na+ and Ca2+ diffusion coefficients agree well with experimental reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号