共查询到20条相似文献,搜索用时 0 毫秒
1.
Alan R. Rogers Arindam Mukherjee 《Evolution; international journal of organic evolution》1992,46(1):226-234
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates. 相似文献
2.
Luke J. Harmon Richard E. Glor 《Evolution; international journal of organic evolution》2010,64(7):2173-2178
The Mantel test, based on comparisons of distance matrices, is commonly employed in comparative biology, but its statistical properties in this context are unknown. Here, we evaluate the performance of the Mantel test for two applications in comparative biology: testing for phylogenetic signal, and testing for an evolutionary correlation between two characters. We find that the Mantel test has poor performance compared to alternative methods, including low power and, under some circumstances, inflated type‐I error. We identify a remedy for the inflated type‐I error of three‐way Mantel tests using phylogenetic permutations; however, this test still has considerably lower power than independent contrasts. We recommend that use of the Mantel test should be restricted to cases in which data can only be expressed as pairwise distances among taxa. 相似文献
3.
J. Meril B. C. Sheldon H. Ellegren 《Evolution; international journal of organic evolution》1998,52(3):870-876
Quantitative genetic theory predicts that evolution of sexual size dimorphism (SSD) will be a slow process if the genetic correlation in size between the sexes is close to unity, and the heritability of size is similar in both sexes. However, there are very few reliable estimates of genetic correlations and sex-specific heritabilities from natural populations, the reasons for this being that (1) offspring have often been sexed retrospectively, and hence, selection acting differently with respect to body size in the two sexes between measuring and sex identification can bias estimates of SSD; and (2) in many taxa, parents may be incorrectly assigned to offspring either because of assignment errors or because of extrapair paternity. We used molecular sex and paternity identification to overcome these problems and estimated sex-specific heritabilities and the genetic correlation in body size between the two sexes in the collared flycatcher, Ficedula albicollis. After exclusion of the illegitimate offspring, the genetic correlation in body size between the sexes was 1.00 (SE = 0.22), implying a severe constraint on the evolution of SSD in this species. Furthermore, sex-specific heritability estimates were very similar, indicating that neither sex will be able to evolve faster than the other. By using estimated genetic parameters, together with empirically derived estimates of sex-specific selection gradients, we further demonstrated that the predicted selection response in female tarsus length is displaced about 200% in the opposite direction from that to be expected if there were no genetic correlation between the sexes. The correspondence between the biochemically estimated rate of extrapair paternity (about 15 % of the young) and that estimated from the “heritability method” (11%) was good. However, the estimated rate of extrapair paternity with the heritability method after exclusion of the illegitimate young was 22%, adding to increasing evidence that factors other than extrapair paternity (e.g., maternal effects) may be resposible for the commonly observed higher mother-offspring than father-offspring resemblance. 相似文献
4.
5.
黄鼬(Mustela sibirica)体型大小的性二型及地理变异 总被引:2,自引:1,他引:1
本文报道黄鼬体型大小的性二型及其与地理变异的关系。个体大小的性二型现象很可能与繁殖行为有关,许多在繁殖季节有争偶行为的一雄多雌兽类,雄性都有较大的个体。 相似文献
6.
Jeff P. Reeve Daphne J. Fairbairn 《Evolution; international journal of organic evolution》1996,50(5):1927-1938
We artificially selected for body size in Drosophila melanogaster to test Lande's quantitative genetic model for the evolution of sexual size dimorphism. Thorax width was used as an estimator of body size. Selection was maintained for 21 generations in both directions on males only, females only, or both sexes simultaneously. The correlated response of sexual size dimorphism in each selection regime was compared to the response predicted by four variants of the model, each of which differed only in assumptions about input parameters. Body size responded well to selection, but the correlated response of sexual size dimorphism was weaker than that predicted by any of the variants. Dimorphism decreased in most selection lines, contrary to the model predictions. We suggest that selection on body size acts primarily on growth trajectories. Changes in dimorphism are caused by the fact that male and female growth trajectories are not parallel and termination of growth at different points along the curves results in dimorphism levels that are difficult to predict without detailed knowledge of growth parameters. This may also explain many of the inconsistent results in dimorphism changes seen in earlier selection experiments. 相似文献
7.
SEX CHROMOSOME LINKED GENETIC VARIANCE AND THE EVOLUTION OF SEXUAL DIMORPHISM OF QUANTITATIVE TRAITS
Arild Husby Holger Schielzeth Wolfgang Forstmeier Lars Gustafsson Anna Qvarnström 《Evolution; international journal of organic evolution》2013,67(3):609-619
Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex‐linked genetic variance (h2z). Of 17 traits examined, eight showed a nonzero h2Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex‐linked genetic variance. Sexually selected traits did not show higher h2Z than morphological traits and there was only a weak positive relationship between h2Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. 相似文献
8.
Thomas R. Meagher 《Evolution; international journal of organic evolution》1992,46(2):445-457
It is widely recognized that there are basic conflicts between the resource needs of a plant for paternal versus maternal functions. In dioecious species, these divergent demands, and the selection pressures they impose, can lead to the evolution of sexual dimorphism. The present study was conducted to assess the potential for the evolution of sexual dimorphism in Silene latifolia by evaluating the genetic variation and genetic correlation between characters and between the sexes for a range of growth and reproductive characters. Sexual dimorphism is largely restricted to reproductive characters, particularly flower number and flower size. A canonical correlation analysis revealed considerable intercorrelation between growth characters, such as germination date, height, and leaf size, and reproductive characters; plants that grow fast early on also flower earlier, and plants that produce big leaves also produce big flowers. There was genetic variation for several sexually dimorphic characters; much of the focus in this analysis was on flower size, particularly calyx diameter. Finally, genetic correlations within and between the sexes were found that limit the rate of evolutionary divergence between the sexes. The genetic results suggest that S. latifolia has been subject to divergent selection on the two sexes for a long period of time, bringing about a gradual fixation of sex-limited gene effects, so that the remaining genetic effects are expressed in both sexes. Genetic correlations between the sexes that arise from this residual variation impose limits on further evolutionary change. 相似文献
9.
Kelly R. Zamudio 《Evolution; international journal of organic evolution》1998,52(6):1821-1833
Female-biased sexual size dimorphism is uncommon among vertebrates and traditionally has been attributed to asymmetric selective pressures favoring large fecund females (the fecundity-advantage hypothesis) and/or small mobile males (the small-male advantage hypothesis). I use a phylogenetically based comparative method to address these hypotheses for the evolution and maintenance of sexual size dimorphism among populations of three closely related lizard species (Phrynosoma douglasi, P. ditmarsi, and P. hernandezi). With independent contrasts I estimate evolutionary correlations among female body size, male body size, and sexual size dimorphism (SSD) to determine whether males have become small, females have become large, or both sexes have diverged concurrently in body size during the evolutionary Xhistory of this group. Population differences in degree of SSD are inversely correlated with average male body size, but are not correlated with average female body size. Thus, variation in SSD among populations has occurred predominantly through changes in male size, suggesting that selective pressures on small males may affect degree of SSD in this group. I explore three possible evolutionary mechanisms by which the mean male body size in a population could evolve: changes in size at maturity, changes in the variance of male body sizes, and changes in skewness of male body size distributions. Comparative analyses indicate that population differentiation in male body size is achieved by changes in male size at maturity, without changes in the variance or skewness of male and female size distributions. This study demonstrates the potential of comparative methods at lower taxonomic levels (among populations and closely related species) for studying microevolutionary processes that underlie population differentiation. 相似文献
10.
11.
12.
13.
HELMUT C. MUELLER 《Biological reviews of the Cambridge Philosophical Society》1990,65(4):553-585
Reversed sexual dimorphism in size (RSD) occurs in most species of several taxonomic groups of birds. The hypotheses proposed to explain this phenomenon are examined theoretically, using inequalities to state selection in the most rigorous possible terms. The most pertinent empirical evidence is also examined critically. Proponents of hypotheses on the evolution of RSD have failed to consider the genetic constraints on the evolution of dimorphism. Selection for dimorphism can act on only that small portion of the genetic determination of body size that is sex limited. In general, selection for body size is much more likely to lead to a similar change (e.g. larger) in both sexes than to dimorphism. The most popular hypotheses involve selection for size-related differences in foraging ability. It is unlikely that there is variation in size-related foraging differences available for selection in a monomorphic, ancestral population. Foraging differences between the sexes cannot lead to the evolution of RSD; evolution of large and small morphs of both sexes is a more likely outcome. Selection for sex-role differentiation factors (e.g. large females lay larger eggs, small males are more agile in flight) can lead to the evolution of RSD, but only if the magnitudes of opposing selection for small males and for large females are equal. Combining selection for size-related foraging differences with selection for sex-role differentiation factors hinders the evolution of RSD until the sexes differ in size by 3 s.d . Empirical evidence supports this assertion: statistically significant differences between the sexes in the size of prey taken are found only in highly dimorphic species. The sex-role differentiation factors that have been proposed appear unlikely to provide the equal selection necessary for the evolution of RSD. Several authors have proposed that small size in males is selected for foraging ability and large size in females for some sex-role differentiation factor. Males cannot be more efficient foragers without females being less efficient and efficiency cannot be a factor only when the male is feeding his family. RSD cannot evolve in monogamous species if large females survive less well than small males. RSD might evolve as the result of sexual selection for small size in males and constraints on the reduction of size in females because of some factor associated with reproduction. Examination of seven studies indicating a relationship between female size and reproductive success shows very little unequivocal evidence for small size in females allowing breeding earlier in the season. Large size in females allows females to breed at a younger age in the sparrowhawk and pairs to form more rapidly in three species of sandpipers. Both of these may be the result of sexual selection. There are fewer theoretical problems with sexual selection as a cause for the evolution of RSD than with the other hypotheses. Empirical evidence for sexual selection is scarce but better than that for the other hypotheses. Evidence is contradictory for the selection of small size in males for agility in aerial displays for courtship or defence of territory. Large size in females does not appear to be the result of selection for competitive ability to obtain mates. Facilitation of female dominance and hence of the formation and maintenance of a pair bond is the most viable explanation of the evolution of RSD. It is most likely that all dimorphism (normal or reversed) is the result of sexual selection. RSD is correlated with birds in the diet in the Falconiformes and this is a central theme in the foraging hypotheses. This correlation may be because birds are abundant and available in a continuum of sizes, thus permitting but not causing the evolution of RSD or because species that prey upon birds are better equipped physically (and perhaps more likely behaviourally) to inflict damaging attacks on conspecifics and the greater RSD increases female dominance and the ease of pair formation. 相似文献
14.
15.
COMPARATIVE STUDIES OF LEAF FORM: ASSESSING THE RELATIVE ROLES OF SELECTIVE PRESSURES AND PHYLOGENETIC CONSTRAINTS 总被引:10,自引:5,他引:10
THOMAS J. GIVNISH 《The New phytologist》1987,106(S1):131-160
16.
Lynda F. Delph A. Michele Arntz Caroline Scotti‐Saintagne Ivan Scotti 《Evolution; international journal of organic evolution》2010,64(10):2873-2886
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females. 相似文献
17.
Skulls of 69 bottlenose dolphins (genus Tursiops ) from the Indian/Banana River on the east coast of Florida were examined for evidence of sexual dimorphism. The only sexual dimorphism shown by t -tests on 28 morphological and four meristic skull characters was that males have, on average, more teeth than females in all four arcades. Results of covariance analysis, employed to account for variation in size, indicate minor dimorphism in parietal width of the skull. Twenty body measurements of 29 Tursiops originating in the same area were also analysed for differences between males and females. Statistical results indicate the possibility of sexual dimorphism in the length from the snout to the umbilicus and in flipper width. No evidence was found for differences in overall skull or body length between the sexes. 相似文献
18.
Thomas R. Meagher 《Evolution; international journal of organic evolution》1994,48(4):939-951
A well-established theoretical relationship exists between genetic correlations between the sexes and the dynamics of response to sex-specific selection. The present study investigates the response to sex-specific selection for two sexually dimorphic traits that have been documented to be genetically variable, calyx diameter and flower number, in Silene latifolia. Following the establishment of a base generation with a known genetic background, selection lines were established and two generations of sex-specific selection were imposed. Calyx diameter responded directly to sex-specific selection, and the positive genetic correlation between the sexes was reflected in correlated responses in the sex that was not the basis for selection within a particular line. Flower number showed a more erratic response to sex-specific selection in that selection in some lines was initially in the wrong direction, that is, selection for a decrease in flower number resulted in an increase. These erratic responses were attributable to genotype-environment interaction as reflected in significant heteroscedasticity in variance among families. Correlated responses to selection in the sex that was not the immediate basis for selection indicated the possible existence of a negative genetic correlation between the sexes for this trait. These results test for the first time the impact of genetic correlations between the sexes on the evolutionary dynamics of sexually dimorphic traits in a plant species. 相似文献
19.
Daphne J. Fairbairn Richard F. Preziosi 《Evolution; international journal of organic evolution》1996,50(4):1549-1559
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed. 相似文献