首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrary to the widely accepted view that chiton sperm lack acrosomes and that fertilization in this group occurs via a micropyle, we demonstrate here that fertilization in Tonicella lineata occurs by acrosome-mediated sperm-egg fusion. The acrosome is a small vesicle containing two granules located at the tip of the sperm. The eggs have an elaborate hull (=chorion), which is formed into cupules that remain covered by follicle cells until maturity. When dissected ripe eggs were exposed to sperm in vitro, the sperm were attracted only to open cupules, inside which they swam through one of seven channels to the base where they penetrated the hull. The acrosome fired on contact with, or in, the hull, and during passage through it the apical granule was exhausted while the basal granule was exposed. If sperm contacted follicle cells between the cupules the acrosome did not react. The vitelline layer beneath the hull contains pores arranged in a regular pattern. Embedded in the base of each pore is an egg microvillus. Having penetrated the hull the sperm anterior filament located a pore and fused with the tip of the egg microvillus projecting into it. This created a membranous tube, through which the sperm nucleus was injected into the egg. The egg membrane appeared to be raised up into a small fertilization cone around the penetrating sperm, the vitelline layer became slightly elevated, and some cortical granules were released by exocytosis.  相似文献   

2.
Scanning and transmission electron microscopy were used to determine the morphological changes in the egg plasma membrane associated with sperm binding, fusion and incorporation in Xenopus laevis. Sperm incorporation in Xenopus is rapid, occurring within 3-5 min following addition of sperm. Images have been obtained of both early sperm-egg interactions and fertilisation bodies. Additionally, two drugs that specifically alter F-actin dynamics, latrunculin and jasplakinolide, were used to determine whether sperm incorporation is a microfilament-dependent process. Jasplakinolide did not prevent sperm incorporation, cortical granule exocytosis or cortical contraction, suggesting these events can occur without depolymerisation of existing, stabilised filaments. Latrunculin A, which competes with thymosin beta4 in ooplasm for binding actin monomer, did not inhibit cortical granule exocytosis, but blocked cortical contraction in 100% of eggs at a concentration of 5 microM. Although a single penetrating sperm was found on an egg pretreated in latrunculin, fertilisation bodies were never observed. At < 5 microM latrunculin, many eggs did undergo cortical contraction with some exhibiting severe distortions of the plasma membrane and abnormal accumulations of pigment granules. Preincubation of eggs in jasplakinolide before latrunculin mitigated both these effects to some degree. However, eggs incubated in latrunculin either prior to or after insemination never progressed through first cleavage.  相似文献   

3.
Electrical activation of the hamster egg was used to study cortical granule constituents before and after exocytosis. The activated hamster eggs underwent cortical granule decondensation just prior to and at the time of exocytosis. Some of the cortical granules of aged, unactivated eggs underwent similar changes. FITC- and gold-conjugated Lens culinaris agglutinin (LCA) bound intensely to the surfaces of activated but not unactivated eggs. This labelling was associated with the microvilli. Permeabilized eggs exhibited discrete cortical labelling before activation, with a subsequent decrease following the cortical reaction. Gold-conjugated LCA specifically bound to cortical granules when incubated with thin sections. FITC-soybean trypsin inhibitor (SBTI) bound in discrete foci in the cortex of unactivated eggs. Following activation, cortical labelling by SBTI decreased. Aprotinin and benzamidine hydrochloride inhibited FITC-SBTI from binding to the egg cortex. Gold-avidin localization of biotin-SBTI in the electron microscope demonstrated that condensed cortical granules did not bind SBTI but decondensed or exocytosing granules did. This suggests that a cortical granule protease is exposed just prior to exocytosis. Activated eggs exhibited dramatic decreases in the number of hamster sperm penetrating the cytoplasm, suggesting that a plasma membrane block to polyspermy is temporally related to cortical granule exocytosis.  相似文献   

4.
The cortices of a number of mammalian eggs are not structurally homogeneous but are polarized. In mouse ova the plasma membrane is a mosaic; the cytoplasm overlying the meiotic spindle is devoid of cortical granules and consists of a filamentous layer containing actin. Functionally, this cortical polarity may be related to the restriction of sperm-egg interaction and fusion to a specific region of the ovum cortex and to dynamic changes of the egg cortex during fertilization, including cortical granule exocytosis, polar body formation, and fertilization cone development. The origin of cortical polarity in mammalian oocytes and its possible relation to components of the cytoskeletal system and meiotic apparatus are discussed and compared with cortical features of eggs of other vertebrates and invertebrates.  相似文献   

5.
Summary Fine structural changes in the egg and sperm are described during gamete interaction in Oikopleura dioica, an appendicularian tunicate. The unfertilized egg has a vitelline layer 80 nm thick and a perivitelline space about 5 m wide. In the peripheral cytoplasm are a few cortical granules 0.6×0.7 m in diameter and areas rich in parallel cisternae of rough endoplasmic reticulum alternating with areas rich in long mitochondria. In the deeper cytoplasm the predominant organelles are multivesicular bodies. From 25 s to 60 s after insemination, the egg transiently elongates, although with no obvious cytoplasmic rearrangement, and the egg surface becomes bumpy. During this interval sperm enter the egg, and the cortical granules undergo exocytosis. After expulsion into the perivitelline space, the cortical granule contents do not appear to change their shape or blend with the vitelline layer, which neither elevates further nor loses its ability to bind sperm. On encountering the egg, the sperm undergoes an acrosome reaction involving exocytosis of the acrosome and production of an acrosomal tubule. The acrosomal contents bind the sperm to the vitelline layer, and the posterior portion of the acrosomal membrane and the anterior portion of the nuclear envelope evaginate together to form an acrosomal tubule, which fuses with the egg plasma membrane to form a fertilization cone. By 45 s after insemination, the sperm nucleus, centriole, mitochondrion and at least the anterior portion of the axoneme are within the fertilization cone. By 60 s sperm entry is complete. In having eggs with a cortical reaction and sperm with an acrosome reaction, O. dioica resembles echinoderms and enteropneusts and differs markedly from ascidian tunicates, which lack both these features. The relatively unmodified pattern of gamete interaction in O. dioica in comparison with the highly modified pattern in ascidians is difficult to reconcile with the neoteny theory that appendicularians have evolved via ascidian ancestors. The present results are more consistent with the idea that an appendicularian-like ancestor gave rise to ascidians.  相似文献   

6.
Membrane fusion events are required in three steps in sea urchin fertilization: the acrosome reaction in sperm, fusion of the plasma membrane of acrosome-reacted sperm with the plasma membrane of the egg, and exocytosis of the contents of the egg cortical granules. We recently reported the involvement of a Zn2+-dependent metalloendoprotease in the acrosome reaction (Farach, H. C., D. I. Mundy, W. J. Strittmatter, and W. J. Lennarz. 1987. J. Biol. Chem. 262:5483-5487). In the current study, we investigated the possible involvement of metalloendoproteases in the two other fusion events of fertilization. The use of inhibitors of metalloendoproteases provided evidence that at least one of the fusion events subsequent to the acrosome reaction requires such enzymes. These inhibitors did not block the binding of sperm to egg or the process of cortical granule exocytosis. However, sperm-egg fusion, assayed by the ability of the bound sperm to establish cytoplasmic continuity with the egg, was inhibited by metalloendoprotease substrate. Thus, in addition to the acrosome reaction, an event in the gamete fusion process requires a metalloendoprotease.  相似文献   

7.
Cortical granule exocytosis is important for the block to polyspermy at fertilization in the eggs of most vertebrates and many invertebrates. Cortical granules are poised at the cell surface and exocytose in response to sperm stimulation. Following exocytosis, the cortical granule contents modify the extracellular environment of the egg, the major result of which is to block additional sperm binding. Here we show that proteins homologous to members of the SNARE hypothesis—a molecular model designed to explain the trafficking, docking, and exocytosis of vesicles in the secretory compartment—are present in eggs at the right time and place to be involved in the regulation of cortical granule exocytosis. Using polymerase chain reaction (PCR) screens we have found homologues of synaptobrevin/VAMP, syntaxin, synaptotagmin, and rab3. Antibodies generated to fusion proteins or to synthetic peptides encoded by the cloned cDNAs were used in an immunofluorescence assay to show that each of the cognate proteins are present in the cortex of the egg. A synaptobrevin/VAMP homologue appears to be specifically associated with the membrane of cortical granules before fertilization and, following cortical granule exocytosis, is incorporated into the plasma membrane of the zygote. A rab3 homologue is also associated with cortical granules specifically but, following fertilization, the protein reassociates with different, yet undefined, vesicles throughout the cytoplasm of the zygote. Homologues of synaptotagmin and syntaxin are also present at the egg cortex but, in contrast to rab3 and VAMP, appear to be associated with the plasma membrane. Following fertilization, syntaxin and tagmin remain associated with the plasma membrane and are more readily immunolabeled, presumably due to an increased accessibility of the antibodies to the target protein domains. We also show by immunoblotting experiments that the cognate proteins are of the sizes predicted for these homologues. These results suggest that at least some steps in the biology of cortical granules may be mediated by SNARE homologues, and this finding, along with the unique biology of cortical granules, should facilitate examination of specific events of the fertilization reaction and the mechanism of stimulus-dependent exocytosis. Mol. Reprod. Dev. 48:106–118, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

9.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

10.
Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 micro m in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 micro m to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.  相似文献   

11.
In unfertilized frog eggs, the plasma membrane displays an animal vegetal polarity characterized by the presence of short microvilli in the vegetal hemisphere and long microvilli or ridge-like protrusions in the animal hemisphere. The densities of microvilli are similar in the two hemispheres.
The fertilizing sperm always fuses with the animal hemisphere of the egg and induces a wave of exocytosis of cortical granules from its site of penetration. Similar spreading of the cortical reaction is seen on activation by pricking the egg cortex. The integration of the cortical granule membrane with the plasma membrane is rapidly followed by elongation of microvilli, which is progressively realized all over the egg surface from the site of sperm entry or the site of pricking. At this time, the length and shape of the microvilli in the animal and vegetal hemispheres are similar and their densities are the same as in unfertilized eggs.
A "smoothing" wave can be seen on the living egg, 40–60 seconds after pricking, starting around the site of pricking. This wave of microvillar elongation is accompanied by changes in intensity of diffracted light spots observed at the surface of the egg. This pattern might result from rapid and progressive thickening of the cortex that would drive pigment granules into the cytoplasm. The Brownian movement of these granules is thought to be responsible for the observed diffracted light spots.
Electrical stimulus or the ionophore A23187 induced activation reactions similar to those triggered by the sperm or by pricking, except that the cortical reaction began simultaneously in several distinct sites of the cortex.  相似文献   

12.
The sea urchin egg receptor for sperm is a 350 kDa glycoprotein containing a large extracellular domain that contains the sperm binding site, a transmembrane domain and a short COOH- terminal intracellular domain. During oogenesis, the receptor protein is first detected in Golgi-associated vesicles and cortical granules. Not until the egg is mature does the receptor appear on the cell surface; at this stage the intact receptor is found in approximately equal quantities on the egg cell surface and in cortical granules. As a potentially unique type of receptor, we were interested in its fate following fertilization. Several techniques have revealed that, following sperm binding, the amount of receptor markedly decreases. Using western blot analysis as well as direct measurement of the receptor protein, it was found that the membrane-bound form of the receptor rapidly disappeared following sperm binding to the egg, with only 3% of the receptor remaining after 30 s. Analysis by immupoelectron microscopy revealed that 30 s after sperm binding, 30% of the initial level of receptor was present. This remaining 30% was found mostly within the perivitelline space formed by the raised fertilization envelope. The disparity between these two sets of results (i.e. 3 vs 30%) is most likely accounted for by the exocytosis of receptor molecules from cortical granules; this fraction of the receptor would have been lost during isolation of the membrane-bound form of the receptor. Thus, unlike other cell surface receptors, the sea urchin egg receptor for sperm is not endocytosed and recycled following ligand binding. Rather, it disappears, presumably as a result of proteolysis. Transiently, the cortical granule form of the receptor is found released into the perivitelline space where it may bind to sperm and thereby prevent polyspermy. Despite the apparent secretion of this form of the receptor, experiments with antibodies to the extracellular and intracellular domains indicate that the receptors in cortical granules and in the plasmic membrane are similar, if not identical.  相似文献   

13.
The mechanisms responsible for the plasma membrane associated block to polyspermy in mouse eggs were studied. Reinsemination experiments using zona-free eggs indicated that, after fertilization, the egg plasma membrane is altered such that sperm binding to the egg plasma membrane is blocked, except in the region of the second polar body. Activation of the egg with either ethanol or strontium chloride did not result in a block to polyspermic penetration, as artificially activated eggs displayed identical penetration levels as to nonactivated control eggs. The penetrability of activated eggs was not altered by the presence or absence of the zona pellucida during activation. Lectin staining for egg cortical granule material indicated that activation did cause cortical granule exocytosis; however, activated eggs remained penetrable. These data support the following conclusions: (1) an alteration in the ability of the egg plasma membrane to allow sperm adherence accounts for the block to polyspermy; (2) establishment of the plasma membrane block to polyspermy is sperm dependent, since artificial egg activation does not result in a block response; (3) the contents of the egg's cortical granules do not play a role in the establishment of the plasmalemma block response. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The distribution of polymerized actin in rat eggs fertilized in vitro was determined using NBD-phallacidin (NBD-ph). Unfertilized and fertilized eggs exhibited a 3-5-micron-thick band of fluorescence that encompassed the entire cortical cytoplasm. There was no dramatic increase in the staining of the cortex in association with any component of the fertilizing sperm during its incorporation into the egg. Unfertilized eggs and fertilized eggs obtained at intervals after sperm-egg fusion were treated with cytochalasin B (CB; 5 micrograms/ml) and subsequently stained with NBD-ph. Unfertilized eggs treated with CB exhibited a continuous ring of cortical staining identical to that seen in untreated eggs. Eggs treated with CB 15 min after sperm-egg fusion exhibited small gaps in the cortical staining pattern, whereas those exposed to CB 1 hr after fusion exhibited larger gaps and the staining pattern appeared punctate. This pattern could be seen throughout the remainder of the 7 hr period of sperm incorporation and for at least 13 hr thereafter. CB-treated fertilized eggs that were washed to remove the drug again exhibited uninterrupted cortical staining on treatment with NBD-ph. CB also induced the resorption of surface elevations that are normally seen on the eggs during sperm incorporation, but it did not affect the morphology of unfertilized eggs. The sensitivity to CB during fertilization coincides with the onset of a variety of egg shape changes that occur during the period of sperm incorporation (Battaglia and Gaddum-Rosse, Gamete Res., 10:107-118, 1984a).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Current research on the mechanisms of sperm-egg fusion, theblock to polyspermy, and metabolic activation are described.A cinemicrographic analysis of fertilization reveals that fusionof sperm and egg occurs between non-motile gametes, indicatingthat the flagellar motion of sperm is not required. The blockto polyspermy is reviewed, emphasizing recent work on the roleof cortical granule protease in altering sperm receptors ofthe vitelline layer. Metabolic activation or derepression at fertilization is highlyregulated and occurs in a definite sequence. The primary eventappears to be release of intracellular Ca2+. The timing of metabolicderepression is different in starfish oocytes. Here, a partof the derepression occurs during maturation and another partat fertilization.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1431-1440
The mammalian egg must be fertilized by only one sperm to prevent polyploidy. In most mammals studied to date, the primary block to polyspermy occurs at the zona pellucida, the mammalian egg coat, after exocytosis of the contents of the cortical granules into the perivitelline space. The exudate acts on the zona, causing it to lose its ability to bind sperm and to be penetrated by sperm previously bound to the zona. However, the cortical granule components responsible for the zona block have not been identified. Studies described herein demonstrate that N-acetylglucosaminidase is localized in cortical granules and is responsible for the loss in sperm-binding activity leading to the zona block to polyspermy. Before fertilization, sperm initially bind to the zona by an interaction between sperm surface GalTase and terminal N-acetylglucosamine residues on specific oligosaccharides of the zona glycoprotein ZP3 (Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Nature (Lond.). 357:589-593). These GalTase-binding sites are lost from ZP3 after fertilization, an effect that can be duplicated by N-acetylglucosaminidase treatment. Therefore, N-acetylglucosaminidase, or a related glycosidase, may be present in cortical granules and be responsible for ZP3's loss of sperm-binding activity at fertilization. Of eight glycosidases assayed in exudates of ionophore-activated eggs, N-acetylglucosaminidase was 10-fold higher than any other activity. The enzyme was localized to cortical granules using immunoelectron microscopy. Approximately 70 or 90% of the enzyme was released from cortical granules after ionophore activation or in vivo fertilization, respectively. The isoform of N- acetylglucosaminidase found in cortical granules was identified as beta- hexosaminidase B, the beta, beta homodimer. Inhibition of N- acetylglucosaminidase released from activated eggs, with either competitive inhibitors or with specific antibodies, resulted in polyspermic binding to the zona pellucida. Another glycosidase inhibitor or nonimmune antibodies had no effect on sperm binding to activated eggs. Therefore, egg cortical granule N-acetylglucosaminidase is released at fertilization, where it inactivates the sperm GalTase- binding site, accounting for the block in sperm binding to the zona pellucida.  相似文献   

17.
The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a complex series of membrane potential and resistance changes that occur concomitant with gamete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two approaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: (1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and (2) refertilization of fertilized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artificial activation with 5 μM A23187 or by fertilization in the presence of 10 μM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50–400 msec), but minor (?10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block resulting from the secretion of the cortical granules.  相似文献   

18.
We have determined the temporal relationship between sperm fusion and cortical granule breakdown in the hamster egg. Sperm fusion was determined by the Hoechst-transfer method (Stewart-Savage and Bavister: Dev Biol 128:150-157, 1988), and cortical granules were visualized with fluorescein isothiocynate-conjugated Lens culinaris agglutinin (Cherr et al. J Exp Zool 246:81-93, 1988). By 55 min after insemination, there was an 85% reduction in the density of cortical granules (fewer than four granules/100 microns2). Taking this value as the completion of the cortical reaction, analysis of the data indicate that the cortical reaction was completed 9 min after sperm fusion and 3 min after the formation of the zona and cell surface blocks to polyspermy. There was no obvious spatial pattern of granule loss in eggs that had a Hoechst-positive sperm but had not completed the cortical reaction.  相似文献   

19.
The role of cortical granules in the mouse egg's plasmalemma block to polyspermy was investigated by examining the effect of premature granule loss on egg fertility. Granule loss, quantitated by transmission electron microscopic examination, was induced in zona-free eggs by exposure to the divalent cation ionophore, A23187, or by mechanical removal of zonae. Egg exposure to ionophore led to the loss of approximately 50% of the egg's complement of granules in the absence of nuclear activation (parthenogenesis), while complete cortical granule loss accompanied the parthenogenetic activation seen in a limited population of mechanically stimulated eggs. Aged eggs underwent nuclear activation without a dramatic reduction in granule complements. The fertility of treated zona-free eggs was identical to that of controls, as measured by the percentage of eggs penetrated and by the mean number of sperm recovered per egg. Moreover, both ionophore-treated and aged eggs subsequently underwent a normal sperm-induced block response. Exposure of zona-intact eggs to ionophore was also without effect on egg fertility. These results indicate that cortical granules are not involved in the plasmalemma block to polyspermy in the mouse.  相似文献   

20.
The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal relationships between these events, are not known. This study reports the use of whole egg voltage clamp and loose patch clamp to monitor simultaneously changes of membrane conductance and capacitance at the site of sperm-egg contact. Measurements were made during sperm-egg interactions where sperm entry readily proceeded or was precluded by maintaining the egg's membrane potential either at large, negative values or at positive values. Whenever the sperm evoked an increase of the egg's membrane conductance, that increase initiated abruptly, was localized to the site of sperm attachment, and was accompanied by a simultaneous abrupt increase of the membrane capacitance. This increase of capacitance indicated the establishment of electrical continuity between gametes (possibly fusion of the gametes' plasma membranes). If sperm entry was blocked by large negative membrane potentials, the capacitance cut off rapidly and simultaneously with a decrease of the membrane conductance, indicating that electrical continuity between gametes was disrupted. When sperm entry was precluded by positive membrane potentials, neither conductance nor capacitance increased, indicating that sperm entry was halted before the fusion of membranes. A second, smooth increase of capacitance was associated with the exocytosis of cortical granules near the sperm in eggs that were activated. Electrical continuity between the gametes always preceded activation of the egg, but transient electrical continuity between the gametes alone was not always sufficient to induce activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号