首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudogamous females reproduce parthenogenetically but require sperm. We analyze a density- and frequency-dependent model for the ecological and evolutionary stability of bisexual populations exposed to invasion by pseudogamous clones. In particular, we examine the effects of partial niche overlap and asymmetric competition between sexual and asexual forms. The model predicts that for a variety of relative fitness values for asexual females, pseudogamous forms can successfully invade bisexual populations. The probability of successful invasion increases as niche overlap decreases. Furthermore, invaded populations are often likely to be stable; for the parameter values analyzed, only combinations of nearly complete niche overlap and high asexual fitness will lead to extinction. Even such combinations will be stable under pronounced asymmetric competition. Asymmetric competition does not, however, affect the invadability of bisexual populations. The model predicts that stable populations cannot have more than three or four females per male; populations with more biased sex ratios are expected to be unstable. We analyze available sex ratio data for pseudogamous insects, fish, and salamanders, and find significant changes in roughly one-half of the asexual-dominated populations, but in only one sexual-dominated population. This analysis includes previously unpublished data on population sex ratios in a pseudogamous bark beetle, Ips acuminatus. Some asexual-dominated populations have far more than four females per male, contrary to predictions of the model.  相似文献   

2.
Selection acting on individuals is not predicted to maximize population persistence, yet examples that explicitly quantify conflicts between individual and population level benefits are scarce. One such conflict occurs over sexual reproduction because of the cost of sex: sexual populations that suffer the cost of producing males have only half the growth rate compared to asexuals. Male behaviour can additionally impact population dynamics in a variety of ways, and here we study an example where the impact is unusually clear: the riddle of persistence of sperm‐dependent sexual–asexual species complexes. Here, a sexually reproducing host species coexists with an ameiotically reproducing all‐female sperm parasite. Sexual–asexual coexistence should not be stable because the proportion of asexually reproducing females will rapidly increase and the relative abundance of the sexually reproducing host species will decline. A severe shortage of males will lead to sperm limitation for sexual and asexual females and the system collapses. Male mate choice could reduce the reproductive potential of the asexual species and thus potentially prevent the collapse. In the gynogenetic (sperm‐dependent parthenogenetic) Amazon molly Poecilia formosa and its host (P. latipinna or P. mexicana), males discriminate against asexual females to some extent. Using a population‐dynamical model, we examine the population dynamics of this species complex with varying strengths of male discrimination ability and efficiency with which they locate females and produce sperm. The sexual species would benefit from stronger discrimination, thus preventing being displaced by the asexual females. However, males would be required to evolve preferences that are probably too strong to be purely based upon selection acting on individuals. We conclude that male behaviour does not fully prevent but delays extinction, yet this is highly relevant because low local extinction rates strongly promote coexistence as a metapopulation.  相似文献   

3.
Offspring sex ratios at the termination of parental care should theoretically be skewed toward the less expensive sex, which in most avian species would be females, the smaller gender. Among birds, however, raptors offer an unusual dynamic because they exhibit reversed size dimorphism with females being larger than males. And thus theory would predict a preponderance of male offspring. Results for raptors and birds in general have been varied although population‐level estimates of sex ratios in avian offspring are generally at unity. Adaptive adjustment of sex ratios in avian offspring is difficult to predict perhaps in part due to a lack of life‐history details and short‐term investigations that cannot account for precision or repeatability of sex ratios across time. We conducted a novel comparative study of sex ratios in nestling Cooper's hawks (Accipiter cooperii) in two study populations across breeding generations during 11 years in Wisconsin, 2001–2011. One breeding population recently colonized metropolitan Milwaukee and exhibited rapidly increasing population growth, while the ex‐Milwaukee breeding population was stable. Following life‐history trade‐off theory and our prediction regarding this socially monogamous species in which reversed sexual size dimorphism is extreme, first‐time breeding one‐year‐old, second‐year females in both study populations produced a preponderance of the smaller and cheaper sex, males, whereas ASY (after‐second‐year), ≥2‐year‐old females in Milwaukee produced a nestling sex ratio near unity and predictably therefore a greater proportion of females compared to ASY females in ex‐Milwaukee who produced a preponderance of males. Adjustment of sex ratios in both study populations occurred at conception. Life histories and selective pressures related to breeding population trajectory in two age cohorts of nesting female Cooper's hawk likely vary, and it is possible that these differences influenced the sex ratios we documented for two age cohorts of female Cooper's hawks in Wisconsin.  相似文献   

4.
In gynodioecious populations of flowering plants females and hermaphrodites coexist. Gynodioecy is widespread and occurs in both asexual and sexual species but does not admit a satisfactory explanation from classical sex ratio theory. In sexual populations male fertility restoring genes have evolved to counter non-nuclear male sterility mutations. In pseudogamous asexual populations pollen retention and increased self-fertilization can make male sterility costly. Both of these mechanisms can promote coexistence. However, it remains unclear how either of these mechanisms could evolve if coexistence was not initially possible. In the absence of these adaptations non-spatial models predict that females either fail to invade hermaphrodite populations or else displace them until pollen shortage drives the population to extinction. We develop a pair approximation to a probabilistic cellular automata model in which females and hermaphrodites interact on a regular lattice. The model features independent pollination and colonization processes which take place on different timescales. The timescale separation is exploited to obtain, with perturbation methods, a more manageable aggregated pair approximation. We present both the mean field model which recreates the classical non-spatial predictions and the pair approximation, which strikingly predicts different invasion criteria and coexistence under a wide range of parameters. The pair approximation is shown to correspond well qualitatively with simulation behaviour.  相似文献   

5.
Sperm-dependent (or pseudogamous) forms of parthenogenetic reproduction occur in a wide variety of animals. Inheritance is typically clonal and matroclinous (of female descent), but sperm are needed to initiate normal development. As opposed to true parthenogenesis (i.e., sperm-independent reproduction), pseudogamous parthenogenetic lineages must coexist with a ‘sperm donor’— e.g., males from a conspecific sexual lineage, conspecific hermaphrodites, or males from a closely related sexual species. Such sperm donors do not contribute genetically to the next generation. The parasitic nature of sperm-dependent parthenogenesis raises numerous ecological and evolutionary questions. How do they arise? What factors help stabilize coexistence between the pseudogamous parthenogens and their sperm donors (i.e., ‘sexual hosts’)? Why do males waste sperm on the asexual females? Why does true parthenogenesis not evolve in pseudogamous lineages and free them from their dependency on sperm donors? Does pseudogamous parthenogenesis provide compensatory benefits that outweigh the constraints of sperm-dependence? Herein, we consider some genetic, ecological, and geographical consequences of sperm-dependent parthenogenesis in animals.  相似文献   

6.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

7.
Estimates of the sex ratio and cost of reproduction in plant populations have implications for resource use by animals, reserve design, and mechanisms of species coexistence, but may be biased unless all potentially reproductive individuals are censused over several flowering seasons. To investigate mechanisms maintaining dioecy in tropical forest trees, we recorded the flowering activity, sexual expression, and reproductive effort of all 2209 potentially reproductive individuals within 16 species of Myristicaceae over 4 years on a large forest plot in Amazonian Ecuador. Female trees invested >10 times more biomass than males in total reproduction. Flowering sex ratios were male-biased in four species in ≥1 year, and cumulative 4-year sex ratios were male-biased in two species and for the whole family, but different mechanisms were responsible for this in different species. Annual growth rates were equivalent for both sexes, implying that females can compensate for their greater reproductive investment. There was no strict spatial segregation of the sexes, but females were more often associated with specific habitats than males. We conclude that male-biased sex ratios are not manifested uniformly even after exhaustive sampling and that the mechanisms balancing the higher cost of female reproduction are extremely variable.  相似文献   

8.
Recent theoretical work has shown that haplodiploid cyclical parthenogens, such as rotifers, are expected to have an equal frequency of male‐producing and resting‐egg producing females during their sexual phase. We tested this prediction by following sexual reproduction dynamics in two laboratory populations and one field population of the rotifer Brachionus plicatilis through two growing seasons. We recorded population density, proportion of sexual females, and sex allocation (the proportion of male‐producing sexual females as a fraction of total sexual females). We found this sex allocation ratio to vary from 0.3 to 1.0 in single sampling events. However, when we computed sex allocation by using the integrated densities of both male‐producing sexual females and resting‐egg producing sexual females over time, the two laboratory populations and one of the two field growing seasons showed sex allocation ratios that did not significantly differ from the expected value of 0.5.  相似文献   

9.
种群调节问题作为阐明种群数量变动机制的重要领域,现已引起生态学界很大关注,并已从不同角度进行了各种探讨。特别关于种群密度的反馈调节作用方面,近20多年来已有许多工作予以论证,但其作用原理是多方面的,至今尚未完全阐明,而且争论甚多(Christian,1975;杨荷芳,1982)。  相似文献   

10.
Sex investment ratios in populations of bumblebees are male biased, which contradicts theoretical predictions. Male-biased investment ratios in eusocial Hymenoptera are assumed to be non-stable for both the queen and her workers. In this paper, we show that male-biased sex allocation does not necessarily decrease fitness in the bumblebee Bombus terrestris. A male-biased investment ratio can be the result of an optimal allocation of resources when resources are scarce if (i) there is a large cost difference between male and female production, (ii) there is uncertainty about the amount of resources a colony can invest, and (iii) only a proportion of the investment made in an individual can be reused. This resource allocation then leads to split sex ratios depending on the amount of resources available to a bumblebee colony: colonies under low resource conditions will show a male-biased investment ratio, whereas colonies under high resource conditions allocate more resources towards females. However, the extent to which bumblebee populations show a male-biased sex allocation cannot be explained by cost differences between male and female production alone. In a recent paper, A. F. G. Bourke argued that male-biased investment ratios in bumblebee populations are a by-product of the occurrence of protandry (males emerge before females). Here we will extend Bourke''s argument and show that within a protandrous population, both protandrous and protogynous (females emerge before males) colonies exist. The existence of protandrous and protogynous colonies results in split sex ratios in time, because protogynous colonies rely on males produced by protandrous colonies (partial protandry).  相似文献   

11.
Sexual reproduction of Daphnia pulex in a temporary habitat   总被引:1,自引:0,他引:1  
David J. Innes 《Oecologia》1997,111(1):53-60
Species of Daphnia (Crustacea: Cladocera) typically reproduce by cyclical parthenogenesis, in which a period of all-female parthenogenetic reproduction is followed by sexual reproduction. Sex in Daphnia is determined by the environment, with factors such as temperature, photoperiod and crowding stimulating the production of males and sexual females. Previous studies on Daphnia pulex from temporary pond habitats demonstrated the coexistence of male-producing and non-male-producing (NMP) females, as determined under crowding in the laboratory. A strong genetic component to this sex allocation variation suggested that sex expression in D. pulex is better described as a result of genotype-environment interaction. The present study examined the switch from parthenogenetic to sexual reproduction in two temporary-pond populations of D. pulex. Both populations showed a very early investment in sexual reproduction, independent of population density, by producing males very soon after the populations were reestablished from resting eggs in the early spring. Approximately 40% of the initial broods were male. Additional evidence for gender specialization was obtained by observing the sex of two or three successive broods for 85 individual females. Fifty-eight females produced successive broods of females, 13 females produced successive broods of males and 14 females produced successive broods which included both male and female broods. Females that produced successive female broods under natural conditions included a higher frequency of NMP females compared to a random sample of females, confirming the existence of NMP females. Sexual females were observed in both populations after the first appearence of males, suggesting that the presence of males may stimulate the production of sexual females. For D. pulex populations in a temporary environment, there appears to be an increased emphasis on sexual reproduction and a decreased influence of the environment on sex determination, compared to Daphnia populations in more permanent habitats. Received: 19 February 1996 / Accepted: 20 January 1997  相似文献   

12.
ABSTRACT.
  • 1 The occurrence of pseudogamous triploid females in populations of the diploid species Ribautodelphax pungens (Ribaut) was studied throughout Europe.
  • 2 Considerable differences in triploid frequencies were found between populations but no regular geographic pattern was discerned.
  • 3 Within populations triploid frequencies proved to be stable from generation to generation.
  • 4 The twofold reproductive advantage of the pseudogamous triploid females is counterbalanced by active mate discrimination by diploid males against the pseudogamous triploid females in populations with high triploid frequencies.
  • 5 Sexual diploid and pseudogamous triploid females showed no differences in phenology.
  • 6 Differential winter mortality was found between diploid and triploid larvae.
  相似文献   

13.
In many angiosperm species, populations are reproductively subdivided into distinct sexual morphs including females, males and hermaphrodites. Sexual polymorphism is maintained by frequency-dependent selection, leading to predictable sex ratios at equilibrium. Charles Darwin devoted much of his book ‘The Different Forms of Flowers on Plants of the Same Species’ (1877) to investigating plant sexual polymorphisms and laid the foundation for many problems addressed today by integrating theory with empirical studies of the demography and genetics of populations. Here, we summarize our recent work on the ecological and genetic mechanisms influencing variation in sex ratios and their implications for evolutionary transitions among sexual systems. We present the results of a survey of sex ratios from 126 species from 47 angiosperm families and then address two general problems using examples from diverse angiosperm taxa: (i) the mechanisms governing biased sex ratios in dioecious species; (ii) the origins and maintenance of populations composed of females, males and hermaphrodites. Several themes are emphasized, including the importance of non-equilibrium conditions, the role of life history and demography in affecting sex ratios, the value of theory for modelling the dynamics of sex ratio variation, and the utility of genetic markers for investigating evolutionary processes in sexually polymorphic plant populations.  相似文献   

14.
What causes male‐biased sex ratios in mature damselfly populations?   总被引:1,自引:0,他引:1  
1. Several hypotheses to account for biased sex ratios in mature insect populations were tested by monitoring two field populations of the damselfly Lestes sponsa and by performing experiments in field cages. The population sex ratios are heavily male biased in this species. 2. The observed sex ratio at emergence was even and both sexes emerged synchronously. Females had longer maturation times but these were insufficient to explain the observed sex ratio shift. 3. Mass increases during maturation were consistently larger in females. In agreement with this, immature females made more flights per unit of time, which should make them more vulnerable to predation, however maturation probabilities were lower in females only in one field cage experiment. This inconsistency may be due to long bad weather conditions. Interestingly, predators reduced mass increase and this reduction was larger in females than in males. 4. Calculations based on the sex specific maturation times show that only slightly lower daily survival probabilities during maturation in females are enough to generate the observed sex ratio shift. 5. Mature survival was higher in males than in females in one field population but not in another, indicating that this cannot be a general mechanism causing the sex ratio. A higher maturation probability in males is therefore the most plausible mechanism causing the sex ratio shift in damselfly populations.  相似文献   

15.
Sex change affects the sex ratios of plant populations and may play an essential role in the evolutionary shift of sexual systems. Sex change can be a strategy for increasing fitness over the lifetime of a plant, and plant size, environmental factors, and growth rate may affect sex change. We described frequent, repeated sex changes following various patterns in a subdioecious Eurya japonica population over five successive years. Of the individuals, 27.5% changed their sex at least once, and these changes were unidirectional or bidirectional. The sex ratio (females/males/all hermaphrodite types) did not fluctuate over the 5 years. In our study plots, although the current sex ratio among the sexes appears to be stable, the change in sex ratio may be slowly progressing toward increasing females and decreasing males. Sex was more likely to change with higher growth rates and more exposure to light throughout the year. Among individuals that changed sex, those that were less exposed to light in the leafy season and had less diameter growth tended to shift from hermaphrodite to a single sex. Therefore, sex change in E. japonica seemed to be explained by a response to the internal physiological condition of an individual mediated by intrinsic and abiotic environmental factors.  相似文献   

16.
To study the coexistence of sexual and gynogenetic forms, we examined the population structure of a gynogenetic complex of the Japanese crucian carp, Carassius auratus Temminck et Schlegel, during the April–June reproductive season by collecting 1225 mature fish that migrated from Lake Suwa to a tributary river for spawning. There were more sexual fish (about 80%) than gynogenetic fish in this complex, and the operational sex ratio in the sexual form was female biased (males were about 20%). Mean standard length and body weight of sexual females were larger than those of sexual males. Sex ratio was male biased in smaller fish (standard length, <8.5 cm) but female biased in larger fish (standard length, ≥8.5 cm). We determined age by scale ring marks; the average age of sexual females was higher than that of males, but there was no significant difference in the average age between sexual and gynogenetic females. Sex ratio in the sexual form was more female biased for old than for young fish, and the mean size of sexual females was larger than that of males of the same age. The clear female-biased sex ratio and age difference between sexual females and males can be explained either by (1) higher mortality of males or by (2) female-biased sex allocation. The latter process reduces the disadvantage of sex and contributes to the coexistence of sexual and gynogenetic forms. Received: November 24, 2000 / Accepted: March 6, 2001  相似文献   

17.
Across sexually reproducing species, males and females are in conflict over the control of reproduction. At the heart of this conflict in a number of taxa is male harassment of females for mating opportunities and female strategies to avoid this harassment. One neglected consequence that may result from sexual harassment is the disruption of important social associations. Here, we experimentally manipulate the degree of sexual harassment that wild female guppies (Poecilia reticulata) experience by establishing replicated, semi-natural pools with different population sex ratios. We quantify the effects of sexual harassment on female social structure and the development of social recognition among females. When exposed to sexual harassment, we found that females had more disparate social networks with limited repeated interactions when compared to females that did not experience male harassment. Furthermore, females that did not experience harassment developed social recognition with familiar individuals over an 8-day period, whereas females that experienced harassment did not, an effect we suggest is due to disruption of association patterns. These results show that social network structure and social recognition can be affected by sexual harassment, an effect that will be relevant across taxonomic groups and that we predict will have fitness consequences for females.  相似文献   

18.
Selective exploitation can cause adverse ecological and evolutionary changes in wild populations and also affect sex ratios but few studies have empirically documented skewed sex ratios in exploited fishes (other than species with extreme sexual size dimorphism, SSD). To investigate the possibility of sex‐selective fishing on Alaskan sockeye salmon Oncorhynchus nerka, we assessed sex ratios in fish at two spatial scales: within each of five fishing districts and among 13 breeding populations in one of these districts. We predicted that populations’ sex ratios would vary based on the average size of fish and SSD because size affects vulnerability to fishing. At the larger scale, we found a small but significant bias in fish returning to four of the five fishing districts (average = 52% females), and in four of the five districts males were caught at significantly higher rates than females. At the finer scale there was marked variation in sex ratio on the breeding grounds, ranging from 36% to 47% males. Populations with fish of intermediate sizes experienced the greatest sex ratio biases; the greater vulnerability of males than females to fishing resulted from a combination of larger SSD and different harvest rates between the sexes associated with the fishery size‐selectivity curve shape. Skewed sex ratios may change competition and behavior on the breeding grounds, relaxing selection on male traits associated with mate choice by females or intra‐sexual competition and altering demographic and evolutionary pressures on the fish. Assessment of the size selectivity of fishing gear and the population's SSD can help to illuminate if and how exploitation can affect sex ratios. Future studies examining size‐selective fishing should also evaluate the consequences for sex ratios, as this might help explain changes in harvested population structure and sustainability.  相似文献   

19.
According to theory, sexual selection in males may efficiently purge mutation load of sexual populations, reducing or fully compensating ‘the cost of males’. For this to occur, mutations not only need to be deleterious to both sexes, they also must affect males more than females. A frequently overlooked problem is that relative strength of selection on males versus females may vary between environments, with social conditions being particularly likely to affect selection in males and females differently. Here, we induced mutations in red flour beetles (Tribolium castaneum) and tested their effect in both sexes under three different operational sex ratios (1:2, 1:1 and 2:1). Induced mutations decreased fitness of both males and females, but their effect was not stronger in males. Surprisingly, operational sex ratio did not affect selection against deleterious mutations nor its relative strength in the sexes. Thus, our results show no support for the role of sexual selection in the evolutionary maintenance of sex.  相似文献   

20.
Thuriferous juniper ( Juniperus thurifera L), a dioecious bush or tree is only found in isolated parts of the western Mediterranean: France, Spain, Algeria and Morocco. These mountain juniper stands are seriously endangered in Morocco as a result of intensive wood removal, and in Europe as a result of recolonization of stands by pines or oaks. Field studies were conducted to investigate sex ratio and sexual dimorphism, never previously examined, in eight different populations in the Atlas mountains and, for comparison, in one of two populations in the French Pyrenees. The sex ratio was female-biased for six of the eight Moroccan stands and especially for the oldest populations. The Pyrenean population showed a similar female-biased ratio. This particular sex ratio is possibly linked to cost of reproduction, paid by both males and females. Sex ratios can also be linked to population dynamics. Males begin to flower slightly younger than females, which explains their apparent dominance in young populations in Morocco or in a recolonization zone with young trees in the Pyrenees. Studies concerning sexual dimorphism in the western High Atlas sites showed no significant difference in phytomass between males and females. Females appear to be significantly taller but with a lower radial growth. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 237–244.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号