首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Between 1969 and 1977 the frequency of the blue phenotype of the dimorphic Lesser Snow Goose (Anser caerulescens caerulescens) showed a steady increase at the La Pérouse Bay colony near Churchill, Manitoba. Cooch (1961, 1963) suggested the global increase resulted from selection pressures favoring blue individuals. The selection hypothesis was evaluated by examining phenotypic differences in net fecundity. We partitioned the reproductive cycle into a series of stages, each defined by a particular index of fecundity. Despite large samples we were unable to detect any significant differences between the two maternal phenotypes in those indices that could conceivably influence population dynamics. We cannot, however, dismiss selection as the mechanism of population change, nor as a contributor to the maintenance of the polymorphism without assessing potential phenotypic differences in viability, age of maturation, and breeding propensity. These attributes are examined in the following paper (Rockwell et al., 1985).  相似文献   

2.
The investigated the hypothesis that positive assortative mating for plumage coloration observed in populations of the dichromatic Lesser Snow Goose (Anser caerulescens caerulescens) evolved and persists due to selective advantages accruing to individuals choosing mates phenotypically similar to themselves. We examined potential differences between pure (white × white, blue × blue) and mixed (white × blue, blue × white) pairs for an array of fitness components related to both fecundity and viability. While no differences were detected for most components, mixed pairs consistently enjoyed enhanced nesting success relative to their pure counterparts. In addition, pre-reproductive viability and female offspring recruitment were significantly greater for mixed pairs for some of the cohorts examined. Not only have we failed to find enhanced reproductive success associated with positive assortment, we have provided evidence that there is some advantage associated with negative assortment. In light of our findings, we suggest: 1) that positive assortment results from the use of familial color as one element in species recognition; 2) that the enhanced fitness of mixed pairs, particularly with respect to nesting success, results from complementation of parental behavior; and 3) that while negative assortment will not likely become the rule in this population, the selective advantage of mixed pairs is a potential determinant of pair type frequencies in the La Pérouse Bay population.  相似文献   

3.
Reports of positive associations between allozymic heterozygosity and measures of fitness are routine, but it has not been possible to distinguish between the two preeminent explanations of the phenomenon, dominance and overdominance. We tested several of the assumptions of these hypotheses in our study of the relationship between electrophoretic genotype and three life history traits in loblolly pines (Pinus taeda L.). Traits examined included the survival and growth of selfed and outcrossed progeny of 45 maternal trees, and maternal fecundity, measured as the number of surviving progeny per mother tree. Inbreeding depression was severe; the relative fitness of the selfed progeny was only 8% that of the outcrossed progeny. We found a heterozygote fecundity advantage, which should have resulted in an excess of rare alleles in the progeny. Instead, there was evidence of severe survival selection against rare alleles in both heterozygous and homozygous forms. The deficit of rare alleles averaged 69 and 50% in the selfed and outcrossed progeny, respectively. The one allele in the sample that we should have suspected of being maintained by overdominance (a PGI2 mid-frequency allele) appeared to be overdominant for outcrossed height growth and probably for fecundity as well. Multiple-locus genotype explained very little of the variation in growth, however, and rather than seeing evidence for overdominance as a force in maintaining most of the observed polymorphism, we were left to explain, in the face of the severe survival selection, why the rare alleles were present at all. Projection of the stand into the future through computer simulation showed how balancing selection acting on differential growth, fecundity, and mortality among genotypes could, over the life of the stand, account for the maintenance of the rare alleles in the population.  相似文献   

4.
The pattern of selection acting in nature on the chromosomal polymorphism of the cactophilic species Drosophila buzzatii was investigated by comparing inversion and karyotypic frequencies through four different life-cycle stages: adult males, eggs, third-instar larvae, and immature adults. All population samples were obtained in June 1981 at an old Opuntia ficus-indica plantation near Carboneras, Spain. The analysis rests on several assumptions which are explicitly set forth and discussed. The results, if these assumptions prove true, indicate strong directional selection for larval viability acting on the second-chromosome karyotypes and also suggest selective differences in fecundity and longevity. Heterotic selection, however, cannot be ruled out for other fitness components such as male mating success. This kind of selection could be operating on the fourth-chromosome polymorphism as well. Some gene arrangements showed significant and opposite changes in frequency at different parts of the life cycle, thus demonstrating endocyclic selection.  相似文献   

5.
Recent research has emphasized the importance of investigating the reaction norms of quantitative traits to understand evolution in natural environments. In this study, genetic differences in reaction norms among eight populations of the grass Bouteloua rigidiseta were examined using clonal replicates of genotypes planted in a common garden with two levels of competition (single B. rigidiseta without competition and single B. rigidiseta surrounded by four Erioneuron pilosum). The populations were found to be genetically differentiated for a variety of traits. Differences in reaction norms of size-specific fecundity (spikelet clusters per tiller number) were detected among the populations: some showed little response to competition; in others size-specific fecundity was much greater in the absence of competition. This divergence in reaction norms among these populations may be the result of past selection (including the cost of plasticity), or genetic drift.  相似文献   

6.
In this study we examined the direct and correlated responses for fast and slow preadult development time in three laboratory populations of the bean weevil (Acanthoscelides obtectus). The first population (“base,” B) has experienced laboratory conditions for more than 10 years; the second (“young,” Y) and the third (“old,” O) populations were selected for early and late reproduction, respectively, before the onset of the present experiments. All three populations are successfully selected for both fast and slow preadult development. The realized heritabilities are very similar in all populations, suggesting a similar level of the additive genetic variance for preadult development. We studied the correlated responses on the following life-history traits: egg-to-adult viability, wet body weight, early fecundity, late fecundity, total realized female fecundity, and adult longevity. All life-history traits examined here, except for the egg-to-adult viability, are affected by selection for preadult development in at least in one of the studied populations. In all three populations, beetles selected for slow preadult development are heavier and live longer than those from the fast-selected lines. The findings with respect to adult longevity are unexpected, because the control Y and O populations, selected for short- and long-lived beetles, respectively, do not show significant differences in preadult development. Thus, our results indicate that some kind of asymmetrical correlated responses occur for preadult development and adult longevity each time that direct selection has been imposed on one or the other of these two traits. In contrast to studies with Drosophila, it appears that for insect species that are aphagous as adults, selection for preadult development entails selection for alleles that also change the adult longevity, but that age-specific selection (applied in the Y and O populations) mostly affects the alleles that have no significant influence on the preadult development. Implications of these findings on the developmental and evolutionary theories of aging are also discussed.  相似文献   

7.
8.
Fitness results from an optimal balance between survival, mating success and fecundity. The interactions between these three components of fitness vary depending on the selective context, from positive covariation between them, to antagonistic pleiotropic relationships when fitness increases in one reduce the fitness of others. Therefore, elucidating the routes through which selection shapes life history and phenotypic adaptations via these fitness components is of primary significance to understanding ecological and evolutionary dynamics. However, while the fitness components mediated by natural (survival) and sexual (mating success) selection have been debated extensively from most possible perspectives, fecundity selection remains considerably less studied. Here, we review the theoretical basis, evidence and implications of fecundity selection as a driver of sex‐specific adaptive evolution. Based on accumulating literature on the life‐history, phenotypic and ecological aspects of fecundity, we (i) suggest a re‐arrangement of the concepts of fecundity, whereby we coin the term ‘transient fecundity’ to refer to brood size per reproductive episode, while ‘annual’ and ‘lifetime fecundity’ should not be used interchangeably with ‘transient fecundity’ as they represent different life‐history parameters; (ii) provide a generalized re‐definition of the concept of fecundity selection as a mechanism that encompasses any traits that influence fecundity in any direction (from high to low) and in either sex; (iii) review the (macro)ecological basis of fecundity selection (e.g. ecological pressures that influence predictable spatial variation in fecundity); (iv) suggest that most ecological theories of fecundity selection should be tested in organisms other than birds; (v) argue that the longstanding fecundity selection hypothesis of female‐biased sexual size dimorphism (SSD) has gained inconsistent support, that strong fecundity selection does not necessarily drive female‐biased SSD, and that this form of SSD can be driven by other selective pressures; and (vi) discuss cases in which fecundity selection operates on males. This conceptual analysis of the theory of fecundity selection promises to help illuminate one of the central components of fitness and its contribution to adaptive evolution.  相似文献   

9.
Trade-offs between reproduction and life span are ubiquitous, but little is known about their underlying mechanisms. Here we combine treatment with the juvenile hormone analog (JHa) methoprene and experimental evolution in Drosophila melanogaster to study the potential role of juvenile hormone (JH) in mediating such trade-offs at both the physiological and evolutionary level. Exposure to JHa in the larval medium (and up to 24 h posteclosion) increased early life fecundity but reduced life span of normal (unselected) flies, supporting the physiological role of JH in mediating the trade-off. This effect was much smaller for life span, and not detectable for fecundity, in fly lines previously bred for 19 generations on a medium containing JHa. Furthermore, these selection lines lived longer than unselected controls even in the absence of JHa treatment, without a detectable reduction in early life fecundity. Thus, selection for resistance to JHa apparently induced some evolutionary changes in JH metabolism or signaling, which led to longer life span as a correlated response. This supports the hypothesis that JH may mediate evolution of longer life span, but--contrary to our expectation-this apparently does not need to trade--off with fecundity.  相似文献   

10.
The hypothesis that females of socially monogamous species obtain indirect benefits (good or compatible genes) from extra-pair mating behaviour has received enormous attention but much less generally accepted support. Here we ask whether selection for adult survival and fecundity or sexual selection contribute to indirect selection of the extra-pair mating behaviour in socially monogamous coal tits (Periparus ater). We tracked locally recruited individuals with known paternity status through their lives predicting that the extra-pair offspring (EPO) would outperform the within-pair offspring (WPO). No differences between the WPO and EPO recruits were detected in lifespan or age of first reproduction. However, the male WPO had a higher lifetime number of broods and higher lifetime number of social offspring compared with male EPO recruits, while no such differences were evident for female recruits. Male EPO recruits did not compensate for their lower social reproductive success by higher fertilization success within their social pair bonds. Thus, our results do not support the idea that enhanced adult survival, fecundity or within-pair fertilization success are manifestations of the genetic benefits of extra-pair matings. But we emphasize that a crucial fitness component, the extra-pair fertilization success of male recruits, has yet  相似文献   

11.
Estimates of viability and fecundity selection of 13 phenotypic characters for 1,536 individuals of Impatiens pallida growing in 24 locations within a single natural population were compared. Directional viability selection of cotyledon area, day of initial leaf production, number of leaves, and stem length was detected throughout this population. Directional fecundity selection of cotyledon area, day of initial flower production, number of leaves present on day of initial flower production, stem length on day of initial flower production, number of leaves, and stem length was also detected. Phenotypic selection of these characters was strong in some cases, and the strength of selection was significantly heterogeneous among locations. For several of the characters, directional phenotypic selection within the population was significantly positive in some locations and significantly negative in others separated by only a few meters. Fecundity selection was stronger than viability selection for some characters, implying that fecundity selection was at least as important as viability selection within this population. Soil moisture levels and light intensities played a larger role than soil nutrient levels in determining the patterns of both viability and fecundity selection, and differences in directional viability selection were more strongly related to environmental variation than were differences in fecundity selection. The pattern of phenotypic selection could not be reliably inferred from the patterns of mortality and reproduction alone.  相似文献   

12.
Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff–that is, the “potential fecundity cost”—should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such “potential fecundity” tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in many reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed.  相似文献   

13.
Life‐history theory postulates that evolution is constrained by trade‐offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade‐offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life‐history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry‐oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad‐sense) for all traits and several negative genetic correlations between traits (trade‐offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance–covariance matrices ( G ) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G × E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.  相似文献   

14.
Size-related phenotypic variation among second-chromosome karyotypes inDrosophila buzzatii was examined in an Argentinian natural population. For all measured traits (thorax and wing length; wing, head and face width), this inversion polymorphism exhibited a significant and (additive) linear contribution to the phenotypic variance in newly emerged wild flies. The results suggest that only overall body size, and not body shape, is affected. as no karyotypic variation was found for any trait when the effects of differences in within-karyotype size were removed with Burnaby's method. Likewise, in an experiment of longevity selection in the wild, variation in chromosomal frequencies was verified in the direction predicted on the basis of: (i) previous studies on longevity selection for body size in the wild and (ii) the pattern of chromosomal effects we observed on size. The direction of such selection is consistent with a pattern of antagonistic selection detected in previous studies on the inversion polymorphism.  相似文献   

15.
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil.  相似文献   

16.
In many organisms, genotypic selection may be a less effective means of adapting to unpredictable environments than is selection for phenotypic plasticity. To determine whether genotypic selection is important in the evolution of complex life cycles of amphibians that breed in seasonally ephemeral habitats, we examined whether mortality risk from habitat drying in natural populations of small-mouthed salamanders (Ambystoma texanum) corresponded to length of larval period when larvae from the same populations were grown in a common laboratory environment. Comparisons were made at two levels of organization within the species: 1) among geographic races that are under strongly divergent selection regimes associated with the use of pond and stream habitats and 2) among populations within races that use the same types of breeding habitats. Morphological evidence indicates that stream-breeding A. texanum evolved from pond-breeding populations that recently colonized streams. Larvae in streams incur heavy mortality from stream drying, so the upper bound on length of larval period is currently set by the seasonal duration of breeding sites. We hypothesized that selection would reduce length of larval period of pond-breeders that colonize streams if their larval periods are inherently longer than those of stream-breeders. The results of laboratory experiments support this hypothesis. When grown individually in a common environment, larvae from stream populations had significantly shorter larval periods than larvae from pond populations. Within races, however, length of larval period did not correlate significantly with seasonal duration of breeding sites. When males of both races were crossed to a single pond female, offspring of stream males had significantly shorter larval periods than offspring of pond males. Collectively, these data suggest that differences in complex life cycles among pond and stream-breeders are due to genotypic selection related to mortality from habitat drying. Stream larvae in the common-environment experiment were significantly smaller at metamorphosis than pond larvae. Yet, the evolution of metamorphic size cannot be explained readily by direct selection: there are no intuitively obvious advantages of being relatively small at metamorphosis in streams. A positive phenotypic correlation was observed between size at metamorphosis and length of larval period in most laboratory populations. A positive additive genetic correlation between these traits was demonstrated recently in another amphibian. Thus, we suspect that metamorphic size of stream-breeders evolved indirectly as a consequence of selection to shorten length of larval period.  相似文献   

17.
Growth and reproduction in higher plants depend on meristems, which have three developmental fates. A meristem can become reproductive, but doing so terminates its activity, it can differentiate vegetatively, or it can remain quiescent for extended periods. The first two fates are mutually exclusive, and only the second leads to the production of additional meristems for subsequent growth and reproduction. In Polygonum arenastrum (frequently referred to as P. aviculare in North American Floras), an annual species lacking quiescent meristems, a quantitative genetic analysis of inbred full-sibling families revealed genetic variation in the developmental pattern of axillary meristem commitment to vegetative growth versus reproduction. Developmental variation resulted in family differences in the age of first reproduction, in age-specific fecundity and growth, and in final plant size and reproductive output. Furthermore, there were strong negative genetic correlations between age-specific growth and fecundity. Early commitment of meristems to reproduction favors high early fecundity, but reduces the number of meristems available for vegetative differentiation, and leads to lowered growth rates and fecundity later in life, when meristems are limiting. Conversely, meristem commitment to vegetative growth early in life results in low early fecundity but high late fecundity and growth. Meristem limitation, like resource limitation, is a proximate mechanism that generates trade-offs between life history traits. Differences between meristem limitation and resource limitation are discussed. Meristem limitation leads automatically to a senescent life history because of the determinate fate of reproductive meristems. Developmental characters were also found to be genetically correlated with metamer characters (leaf size, internode length) and seed size in this selfing species. The pattern of correlation is suggestive of selection for particular suites of life history and morphological characters.  相似文献   

18.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

19.
J. Bengtsson  B. Baur 《Oecologia》1993,94(1):17-22
We examine whether pioneer species of terrestrial gastropods (snails and slugs) possess particular life history traits commonly associated with r-selection, using data on gastropod colonization in four areas in north-west Europe (the Kvarken and Tvärminne archipelagos in the Baltic, polder woods in IJsselmeer, and a rehabilitated quarry near Maastricht). Data on age at first reproduction, longevity, clutch size, egg size and lifetime fecundity were gathered from the literature. In order to control for potentially confounding effects of body size on life history traits, we compared the residuals from the allometric relations between life history traits and body size for pioneers and non-pioneers. In snails, all life history traits examined were related to body size. In slugs, all traits except age at first reproduction scaled with body size. Body sizes did not differ between pioneers and non-pioneers in any area. In all four areas, there were no significant differences between pioneers and non-pioneers in any of the life history traits examined, after body size had been taken into account. This indicates that pioneer terrestrial gastropods generally cannot be regarded as r-selected. Pioneer species may possess any of several life history strategies, and the combinations of traits shown by them may have little in common with the r-K selection concept.  相似文献   

20.
Despite the potential for rapid evolution, stasis is commonly observed over geological timescales—the so‐called “paradox of stasis.” This paradox would be resolved if stabilizing selection were common, but stabilizing selection is infrequently detected in natural populations. We hypothesize a simple solution to this apparent disconnect: stabilizing selection is hard to detect empirically once populations have adapted to a fitness peak. To test this hypothesis, we developed an individual‐based model of a population evolving under an invariant stabilizing fitness function. Stabilizing selection on the population was infrequently detected in an “empirical” sampling protocol, because (1) trait variation was low relative to the fitness peak breadth; (2) nonselective deaths masked selection; (3) populations wandered around the fitness peak; and (4) sample sizes were typically too small. Moreover, the addition of negative frequency‐dependent selection further hindered detection by flattening or even dimpling the fitness peak, a phenomenon we term “squashed stabilizing selection.” Our model demonstrates that stabilizing selection provides a plausible resolution to the paradox of stasis despite its infrequent detection in nature. The key reason is that selection “erases its traces”: once populations have adapted to a fitness peak, they are no longer expected to exhibit detectable stabilizing selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号