共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The flux of consumer-derived nutrients is recognized as an important ecosystem process, yet few studies have quantified the impact of these fluxes on freshwater ecosystems. The high abundance of bivalves in both marine and freshwater suggests that bivalves can exert large effects on aquatic food webs. The objective of our study was to determine the importance of unionid mussel-derived nitrogen (MDN) to the food web. We used a stable isotope tracer approach in conjunction with nutrient uptake and excretion experiments. We fed mussels (Lampsilis siliquiodea, n = 249) a 15N-enriched algal diet and placed them into a N-limited stream for 63 days. Mussel hemolymph was non-lethally sampled over the course of the experiment to measure tissue turnover of δ15N and excretion experiments were done to model the amount of N mussels provided in comparison to stream N uptake demand. Multiple food web pools were sampled twice prior and five times following the mussel addition to trace the 15N through the food web. Our mussel excretion rates in comparison to areal uptake demand suggested that mussel excretion can account for 40% of the total N demand in this stream. Our enrichment showed that MDN was entering the food web and supplied up to 19% of the N in specific compartments of the food web near the mussel bed. When scaled to a natural mussel aggregation, our results suggest up to 74% of N in the food web may be mussel-derived. Our results show that N supplied by mussels can be an important nutrient subsidy that provides food web support. 相似文献
4.
The effects of fixation on the cell volume of marine heterotrophic nanoflagellates and planktonic ciliates were investigated. Decreases in cell volume depended on the combination of the protozoan taxa and the particular fixative. For a particular fixative and protozoan species, degree of shrinkage was independent of physiological state. The volume of fixed cells was found to be approximately 20 to 55% lower than the cell volume of live organisms. For the heterotrophic microflagellates, the fixatives ranked, in order of decreasing effect on cell volume, as glutaraldehyde, formaldehyde, acid Lugol's solution, and modified van der Veer solution. With oligotrichous ciliates and a tintinnid ciliate, formaldehyde caused less shrinkage than glutaraldehyde or acid Lugol's solution. With the aldehyde fixatives, the microflagellates were found to shrink more than the ciliates. Differential effects of fixation on cell volumes may result in an underestimation of the biomass of certain protozoan taxa in natural samples. 相似文献
5.
6.
Philip Warren 《Freshwater Biology》2008,53(12):2640-2641
8.
群落是指一定地段或生境里各种生物种群构成的结构单元。群落内各物种不是孤立存在的,它们之间存在着极为复杂的营养联系。一种植物常有多种害虫取食,一种害虫可取食多种植物,同时又被多种天敌捕食或寄 相似文献
9.
Demars Benoît O. L. Kemp Joanna L. Marteau Baptiste Friberg Nikolai Thornton Barry 《Ecosystems》2021,24(8):1944-1961
Ecosystems - The annual global loss of organic carbon from terrestrial ecosystems into rivers is similar to the organic carbon stored in soils each year. Dissolved organic matter (DOM) flows... 相似文献
10.
11.
12.
Ryan J. Woodland Daryl P. Holland John Beardall Jonathan Smith Todd Scicluna Perran L. M. Cook 《PloS one》2013,8(6)
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs. 相似文献
13.
James A. Nelson Christopher D. Stallings William M. Landing Jeffery Chanton 《Ecosystems》2013,16(6):1130-1138
We evaluated the potential contribution of allochthonous biomass subsidies to the upper trophic levels of offshore food webs in the northeastern Gulf of Mexico (GOM). We made this evaluation considering nitrogen, an essential and often limiting nutrient in coastal ecosystems, to estimate the potential production of within-ecosystem biomass relative to the known import of biomass from an adjacent seagrass-dominated ecosystem. When adjusted for trophic transfer efficiency, we found the biomass subsidy from a single species (pinfish, Lagodon rhomboides) from nearshore seagrass habitat to the offshore GOM to be greater than the amount of nitrogen exported by two major rivers and local submarine ground water discharge. Our calculations show that seagrass-derived biomass accounts for approximately 25% of the total potential production in the northeastern GOM. This estimate is in agreement with a previous study that found 18.5–25% of the biomass in a predatory reef fish was derived from seagrass biomass inputs. These results indicate that all of the sources we consider account for the majority of the nitrogen available to the food web in the northeastern GOM. Our approach could be adapted to other coupled ecosystems to determine the relative importance of biomass subsidies to coastal ocean food webs. 相似文献
14.
Karel imek Dieter Babenzien Thomas Bittl Rainer Koschel Miroslav Macek Jií Nedoma Jaroslav Vrba 《International Review of Hydrobiology》1998,83(1):3-18
The microbial loop of a naturally acidic bog lake, Große Fuchskuhle (Northeastern Germany), that had been artificially divided into 4 basins, was investigated. In the northeast (NE) and southwest (SW) basins, which differ strongly in chemistry and primary production, we conducted intensive studies of the main carbon fluxes through microbial food webs. In the less acidic, NE basin, much higher phytoplankton as well as bacterial biomass and production were found in parallel with negligible numbers of larger zooplankters. Weakly top-down controlled populations of protists were characterized by an exceptionally low numerical proportion of heterotrophic nanoflagellates (HNF) to ciliates (-1.5-3.5). The ciliate community was dominated by a scuticociliate, Cyclidium sp. (>95% of total ciliates), with an estimated grazing rate equal to 46–80% of heterotrophic bacterial production. In contrast, in the more humic, SW basin, both phyto- and bacterioplankton dynamics seemed to be top-down controlled by abundant populations of small fine-filter feeding cladocerans, Ceriodaphnia quadrangula and Diaphanosoma brachyurum. Consequently, ciliates disappeared from the food web structure of the SW basin, HNF dropped to negligible numbers and bacteria showed very uniform morphology, dominated by small cocci or short rods. Our investigations have shown that the division of the lake into separate compartments can lead to very different microbial food web structures with extreme species compositions. 相似文献
15.
Food webs near the interface of adjacent ecosystems are potentially subsidised by the flux of organic matter across system boundaries. Such subsidies, including carrion of marine provenance, are predicted to be instrumental on open-coast sandy shores where in situ productivity is low and boundaries are long and highly permeable to imports from the sea. We tested the effect of carrion supply on the structure of consumer dynamics in a beach-dune system using broad-scale, repeated additions of carcasses at the strandline of an exposed beach in eastern Australia. Carrion inputs increased the abundance of large invertebrate scavengers (ghost crabs, Ocypode spp.), a numerical response most strongly expressed by the largest size-class in the population, and likely due to aggregative behaviour in the short term. Consumption of carrion at the beach-dune interface was rapid and efficient, driven overwhelmingly by facultative avian scavengers. This guild of vertebrate scavengers comprises several species of birds of prey (sea eagles, kites), crows and gulls, which reacted strongly to concentrations of fish carrion, creating hotspots of intense scavenging activity along the shoreline. Detection of carrion effects at several trophic levels suggests that feeding links arising from carcasses shape the architecture and dynamics of food webs at the land-ocean interface. 相似文献
16.
JOHN J. LEE ANTHONY T. SOLDO WERNER REISSER MONICA J. LEE K. W. JEON HANS-DIETER G
RTZ 《The Journal of eukaryotic microbiology》1985,32(3):391-403
Long neglected has been the extensive and more or less intimate association of protozoa with a wide variety of other cells, either prokaryotic or eukaryotic in nature. Yet study of such relationships can provide important information concerning certain basic aspects of cellular evolution in general. A survey is offered here of the whole range of such symbiotic associations (i.e. with species of protozoa serving as hosts) with the purposes of drawing attention to the exciting possibilities of such research and of reviewing significant findings made to date. Because of the vastness of the overall field, examples and discussion are primarily limited to consideration of the following major studies: methanogenic bacteria in certain ciliates, bacterial endosymbionts of the large freshwater amoeba Pelomyxa palustris (itself an amazing organism from an evolutionary/phylogenetic point of view), the rod-shaped bacteria found in Amoeba proteus, the “Greek-letter” prokaryotes of Paramecium species, the xenosomes (sensu stricto) of the marine scuticociliate Parauronema acutum, and the diverse algal endosymbionts of similarly diverse protozoan taxa–ciliates, flagellates, radiolarians, acantharians, and foraminifera. 相似文献
17.
Feeding habits of freshwater protozoa were used to group species into functional, trophic groups. Community structure in differing ecosystems was examined in relation to the number of species occurring in the functional group categories. Six wetland ecosystems and a large river ecosystem were studied. Changes in community structure during the colonization of artificial substrates were also examined. Changes during colonization were studied in a mesotrophic lake, in low-order streams, and in laboratory microecosystems. In the latter case, the response of colonizing communities to a heavy metal toxicant was studied. All communities studied were dominated by bactivorous-detritivorous species and, to a lesser extent, by photosynthetic species. The chief functional role of substrate-associated protozoans appears to be the processing of dead organic matter and its associated bacterial flora. Functional groups utilizing resources other than detrital or mineral nutrients (saprotrophs, algivores, omnivores, and predators) were always minor community components. Colonizing communities were often dominated by photosynthetic species during early colonization stages but were again dominated by bactivorous-detritivorous species at species equilibrium. Low levels of toxicant (Cd) reduced numbers of both photosynthetic and bactivorous-detritivorous species. Higher toxicant levels virtually eliminated photosynthetic species and reduced bacterial detritivores by over one-half. Roles of protozoan species in ecosystems are closely tied to the processing of detritus and the recycling of mineral nutrients. Enumeration of individuals in functional categories is proposed as a simplified method for studying the abundance and activity of protozoa in ecosystems. Examination of changes in functional group composition and the relationship of functional group abundances to rates of carbon processing are suggested for studies of the importance of protozoa to the flow of energy and materials in ecosystems. 相似文献
18.
The effect of temperature changes on the marine pelagic food web was studied in three successive mesocosm experiments, performed during the spring bloom 2001 in the northern Baltic Sea. The temperature was varied from 5 to 20 °C in each experiment, running over a 3-week period. The experiments included food webs of at least four trophic levels: (1) phytoplankton-bacteria, (2) flagellates, (3) ciliates and (4) metazooplankton. The results showed that heterotrophic to autotrophic biomass ratio (H/A) increased 5 times when temperature was raised from 5 to 10 °C. In agreement, the carbon fixation to respiration ratio indicated a decrease of six times over the same temperature range. Furthermore, the sedimentation decreased by 45% when the temperature was elevated from 5 to 10 °C, probably as a consequence of the increased respiration losses and bacterial biodegradation of settling material. Analyzed parameters, thus, indicated that the degree of heterotrophy increased in the temperature interval of 5–10 °C. Above 10 °C, the analyzed parameters in general were more stable. Our results indicate that moderately elevated seawater temperatures, due to climate change or weather alterations, may affect the entire ecosystem function in temperate sea areas by altering the balance between autotrophy and heterotrophy. 相似文献
19.
Blanche Saint-Béat Christine Dupuy Pierrick Bocher Julien Chalumeau Margot De Crignis Camille Fontaine Katell Guizien Johann Lavaud Sébastien Lefebvre Hélène Montanié Jean-Luc Mouget Francis Orvain Pierre-Yves Pascal Gwena?l Quaintenne Gilles Radenac Pierre Richard Frédéric Robin Alain F. Vézina Nathalie Niquil 《PloS one》2013,8(10)
The migratory shorebirds of the East Atlantic flyway land in huge numbers during a migratory stopover or wintering on the French Atlantic coast. The Brouage bare mudflat (Marennes-Oléron Bay, NE Atlantic) is one of the major stopover sites in France. The particular structure and function of a food web affects the efficiency of carbon transfer. The structure and functioning of the Brouage food web is crucial for the conservation of species landing within this area because it provides sufficient food, which allows shorebirds to reach the north of Europe where they nest. The aim of this study was to describe and understand which food web characteristics support nutritional needs of birds. Two food-web models were constructed, based on in situ measurements that were made in February 2008 (the presence of birds) and July 2008 (absence of birds). To complete the models, allometric relationships and additional data from the literature were used. The missing flow values of the food web models were estimated by Monte Carlo Markov Chain – Linear Inverse Modelling. The flow solutions obtained were used to calculate the ecological network analysis indices, which estimate the emergent properties of the functioning of a food-web.The total activities of the Brouage ecosystem in February and July are significantly different. The specialisation of the trophic links within the ecosystem does not appear to differ between the two models. In spite of a large export of carbon from the primary producer and detritus in winter, the higher recycling leads to a similar retention of carbon for the two seasons. It can be concluded that in February, the higher activity of the ecosystem coupled with a higher cycling and a mean internal organization, ensure the sufficient feeding of the migratory shorebirds. 相似文献
20.
Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems. This shortcoming is especially evident with regard to trophic structure and energy flow. We used natural abundances of carbon and nitrogen isotopes to examine patterns of material flow in ten large-river food webs characterized by different landscape-scale hydrologic characteristics (low-gradient river, high-gradient river, river stretches downstream of reservoirs, and reservoirs), and tested predictions from three ecosystem concepts commonly applied to large-rivers: The River Continuum Concept, The Flood Pulse Concept and the Riverine Productivity Model. Carbon derived from aquatic C3 plants and phytoplankton were the dominant energy sources supporting secondary consumers across the ten large-river food webs examined, but relative contributions differed significantly among landscape types. For low-gradient river food webs, aquatic C3 plants were the principal carbon source, contributing as much as 80% of carbon assimilated by top consumers, with phytoplankton secondarily important. The estimated relative importance of phytoplankton was greatest for food webs of reservoirs and river stretches downriver from impoundments, although aquatic C3 plants contributed similar amounts in both landscape types. Highest 99th percentile source contribution estimates for C4 plants and filamentous algae (both approximately 40%) were observed for high-gradient river food webs. Our results for low-gradient rivers supported predictions of the Flood Pulse Concept, whereas results for the three other landscape types supported the Riverine Productivity Model to varying degrees. Incorporation of landscape-scale hydrologic or geomorphic characteristics, such as river slope or floodplain width, may promote integration of fluvial ecosystem concepts. Expanding these models to include hydrologically impacted landscapes should lead to a more holistic understanding of ecosystem processes in large-river systems. 相似文献