首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetative cells of Gonium pectorale have a fine structure similar to that of Chlamydomonas. In addition, three zones comprise an extracellular matrix; a fibrillar sheath and tripartite boundary surround individual cells, and a fragile capsule zone surrounds the entire colony. Cytokinesis is accomplished by a phycoplast and cleavage furrow. The flagellar apparatus of the immature vegetative cell of this colonial alga is similar to that of Chlamydomonas, but the basal bodies are slightly separated at their proximal ends. The four microtubular rootlets alternate between two and four members. During development, the basal bodies become further separated and nearly parallel. The distal fiber is stretched, but it remains attached to both basal bodies. At maturity, the basal bodies of peripheral cells of the colony have rotated in opposite directions on their longitudinal axes resulting in a displacement of the distal fiber to one side, an asymmetrical orientation of the rootlets and loss of 180° rotational symmetry. Central cells remain similar to Chlamydomonas in that basal bodies do not rotate, rootlets are cruciate, the distal fiber remains medially inserted and 180° rotational symmetry is conserved. A “pin-wheel” configuration of flagellar pairs and the orientation of parallel rootlets toward the colony perimeter probably accounts for the rotation of the colonies during forward swimming. In addition, these ultrastructural features support the traditional placement of G. pectorale as an intermediate between the unicellular Chlamydomonas and the more complex colonial volvocalean genera.  相似文献   

2.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

3.
The somatic cell flagellar apparatuses of Volvox carteri f. weismannia (Powers) Iyengar and V. rousseletii G. S. West have parallel or nearly parallel basal bodies which are separated at their proximal ends. The four microtubular rootlets alternate between two and four members, and all are associated with a striated microtubular associated component (SMAC) that runs between the basal bodies. In addition, each half of the flagellar apparatus apparently rotates during development and loses the 180° rotational symmetry characteristic of most unicellular chlorophycean motile cells. All of these features appear necessary for efficient motion of a colony composed of numerous radially arranged cells. However, the structural details of the flagellar apparatuses of these two species differ. The distance between flagella is greater in V. rousseletii than in V. carteri. One distal striated fiber and two proximal striated fibers connect the basal bodies in V. carteri, but both types of fibers are absent from V. rousseletii. In the latter species, a striated fiber wraps around each of the basal bodies and attaches to the rootlets and the SMAC. No such fiber is present in V. carteri. Since the similarities in the flagellar apparatuses can be explained as a result of adaptation for efficient colonial motion in organisms with similar colonial morphology, the differences suggest a wider phylogenetic distance than previously believed.  相似文献   

4.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

5.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

6.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

7.
The interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have apparently detached and migrated towards the cell equator before the first mitosis. The transition regions remain with the flagella, which are now attached to a large apical mitochondrion by cross-striated filamentous components. Both dividing and nondividing cells of Chlorogonium propagate asymmetrical ciliary-type waveforms during forward swimming and symmetrical flagellar-type waveforms during reverse swimming. High-speed cinephotomicrographic analysis indicates that waveforms, beat frequency, and flagellar coordination are similar in both cell types. This indicates that basal bodies, striated fibers, and microtubular rootlets are not required for the initiation of flagellar beat, coordination of the two flagella, or determination of flagellar waveform. Dividing cells display a strong net negative phototaxis comparable to that of nondividing cells; hence, none of these structures are required for the transmission or processing of the signals involved in phototaxis, or for the changes in flagellar beat that lead to phototactic turning. Therefore, all of the machinery directly involved in the control of flagellar motion is contained within the axoneme and/or transition region. The timing of formation and the positioning of the newly formed basal structures in each of the daughter cells suggests that they play a significant role in cellular morphogenesis.  相似文献   

8.
Swimming behavior of the sperm of Lygodium japonicum (Pteridophyta) and the associated ultrastructure of the flagellar apparatus were studied by video microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The sperm has approximately 70 flagella that emerge from a sinistrally-coiled flagellar apparatus, and swims forward by ciliary beat of these flagella. Backward swimming was not observed even after sperm collided with obstacles. Video microscopy showed that the flagella of the swimming sperm are oriented laterally and oblique-anteriorly. TEM and SEM observations revealed that the basal bodies of these flagella are arranged in at least two rows and oriented in the same directions as observed by video microscopy. These basal bodies (flagella) are categorized into two types according to their orientation: group I (laterally directed) and group II (oblique-anteriorly directed). The directionality of the basal bodies appears to be fixed by electron-dense material around their base. The outer dynein arms of the flagellar axoneme are entirely absent. These morphological characteristics of basal bodies (flagella) may relate to the lack of backward swimming behavior of the sperm. Based on these results, the evolution of swimming behavior in the archegoniates is discussed in connection with lack of backward swimming in a distantly related green alga, Mesostigma viride, and the Streptophyta.  相似文献   

9.
The fine structure of the flagellar apparatus of 5 species of the green quadriflagellate alga Carteria is described. The 5 species can be morphologically separated into 2 groups on the bases of cell shape and ultrastructure of the pyrenoid and flagellar apparatus. Group I cells are spherical, possess many pyrenoid thylakoids, and retain a flagellar apparatus similar to that of Chlamydomonas reinhardi. The flagellar bases are oriented at approximately 90° to one another, have distal and proximal fibers, and are associated with 4 cruciately arranged microtubule bands. Cells of group II are ellipsoid, possess few pyrenoid thylakoids, and show a complex system of microtubule bands and sigmoid-shaped, electron dense rods which extend between opposite pairs of basal bodies. The basal bodies of group II cells are directed inward in a circular pattern rather than outward as in group I cells. Unlike Chlamydomonas, the distal fiber of the Carteria species is nonstriated. The proximal fiber is striated, and both distal and proximal fibers are composed of 60–80 Å diameter microfibrils.  相似文献   

10.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   

11.
The absolute configuration of the flagellar apparatus of biflagellate zoospores of Enteromorpha flexuosa (Wulfen ex Roth.) J. Agardh ssp. pilifera (Kütz.) Bliding was determined. Viewed from the anterior of the cell, the flagellar apparatus shows 180° rotational symmetry with a counter-clockwise absolute orientation of its components. In longitudinal sections, the posteriorly directed basal bodies form an angle of about 170°–180° to one another. A reduced striated distal fiber connects the two basal bodies. The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. Striated microtubule-associated components (SMACs or system I-fibers) and rhizoplasts (or system II fibers) accompany the two-membered rootlets. Striated bands connect the proximal sheaths with the four-Membered rootlets. The bilobate terminal caps do not completely cover the proximal ends of the basal bodies. This is the first ultrastructural study of biflagellate zoospores in a member of the Ulvales.  相似文献   

12.
The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.  相似文献   

13.
14.
Absolute configurational analyses of flagellar apparatus components were performed on the motile cells produced by three species of Cladophora, Cl. dalmatica Kütz., Cl. flexuosa (Dillw.) Harv., and Cl. glomerata (L.) Kütz., and by Chaetomorpha aerea (Dillw.) Kütz. There was little variation among the species. All of the flagellar apparatuses demonstrated the ulvophyceous features of 180° rotational symmetry, counterclockwise absolute orientation, and basal body overlap, as well as the alignment of the basal bodies perpendicular to the long axis of the cell. Diagnostic features included the nearly complete absence of C tubules from the basal bodies and the presence of a coarsely striated component dorsal to the two-membered rootlets in all cells, as well as, in quadriflagellate cells, a tetralobate distal fiber, the coaxial arrangement of the lowermost pair of basal bodies, and the presence of a characteristic array of basal-body-associated striated bands. The distal fiber architecture, the presence of a “wing” in the X-membered rootlets, and the “flattening” of the flagellar apparatus components suggests a close relationship of the Cladophoraceae to the Dasycladales, and indicates that these two groups may have shared a common ancestor, possibly ancient in terms of the geological time scale but relatively recent in the context of ulvophyceous evolution. A sizeable phylogenetic gap exists between the Cladophoraceae and uninucleate-celled, presumably primitive members of the Ulvophyceae.  相似文献   

15.
Flagellar development in the plurilocular zoidangia of sporophytes of the brown alga Ectocarpus siliculosus was analyzed in detail using transmission electron microscopy and electron tomography. A series of cell divisions in the plurilocular zoidangia produced the spore-mother cells. In these cells, the centrioles differentiated into flagellar basal bodies with basal plates at their distal ends and attached to the plasma membrane. The plasma membrane formed a depression (flagellar pocket) into where the flagella elongated and in which variously sized vesicles and cytoplasmic fragments accumulated. The anterior and posterior flagella started elongating simultaneously, and the vesicles and cytoplasmic fragments in the flagellar pocket fused to the flagellar membranes. The two flagella (anterior and posterior) could be clearly distinguished from each other at the initial stage of their development by differences in length, diameter and the appendage flagellar rootlets. Flagella continued to elongate in the flagellar pocket and maintained their mutually parallel arrangement as the flagellar pocket gradually changed position. In mature zoids, the basal part of the posterior flagellum (paraflagellar body) characteristically became swollen and faced the eyespot region. Electron dense materials accumulated between the axoneme and the flagellar membrane, and crystallized materials could also be observed in the swollen region. Before liberation of the zoospores from the plurilocular zoidangia, mastigoneme attachment was restricted to the distal region of the anterior flagellum. Structures just below the flagellar membrane that connected to the mastigonemes were clearly visible by electron tomography.  相似文献   

16.
The flagellar apparatus of the biflagellate zoospores from Blastophysa rhizopus Reinke has 180° rotational symmetry of the major components and counterclockwise absolute orientation. The basal bodies are connected anteriorly by a prominent striated distal fiber and posteriorly by two proximal striated bands. The C microtubules in the basal bodies terminate proximal to the transition region. Terminal caps and well-defined proximal sheaths are absent. The four microtubular rootlets diverge at a very small angle from the basal bodies. Six to eight (usually seven) microtubules are present in the s rootlets and two microtubules in the d rootlets. Rootlet 1s is associated with the eyespot. Each d rootlet is subtended by a coarsely striated fiber. Rootlet Id also has a finely striated fiber, roughly opposite the coarsely striated fiber, associated with it. Rhizoplasts and mating structures were not observed. Ultrastructural features of B. rhizopus zoospores are essentially identical with those found in examined members of the Siphonocladales sensu lato (= Siphonocladadales/Cladophorales complex) and Dasycladales, and have relatively few features in common with motile cells of caulerpalean algae. Blastophysa rhizopus probably does not represent an intermediate between the Siphonocladadales and the Caulerpales. Its evolutionary history is different from that of other algae placed in the siphonocladalean family Chaetosiphonaceae. Whether or not Blastophysa is representative of the ancestor to the Siphonodadales and Dasycladales is unclear.  相似文献   

17.
The colonial and multicellular members of the Volvocales can be arranged in order of increasing size and complexity as the “volvocine series.” This series is often assumed to reflect an evolutionary progression. The flagellar apparatuses of previously examined algae are not consistent with a simple lineage. The flagellar apparatuses of Astrephomene gubernaculifera Pocock, Gonium pectorale Müller, Platydorina caudata Kofoid, Volvox rousseletii G. S. West, and V. carteri f. weismannia (Powers) Iyengar differ from one another, and there is no apparent progression inflagellar apparatus features from the simple to complex colonial forms. We examined the flagellar apparatuses of Volvulina steinii Playfair, Eudorina elegans Ehr., and Pleodorina illinoisensis Kofoid and found them to be similar to one another. The basal bodies are connected by a distal fiber that is offset to the anti side of the cell. Two microtubular rootlets originate on the inside of the basal bodies and extend toward the syn side. The other two rootlets are oriented perpendicular to the first two and are anti-parallel to each other. A coarsely striated component underlies the four-membered rootlets and extends to the basal bodies. A proximal fiber complex connects the two basal bodies. This complex consists of a branched striated component on the cis side of each basal body. One part extends toward the anti side of the cell, while the other extends into a fibrous component that runs between basal bodies. An additional structure extends in the anti direction from the trans side of each basal body. A fibrous component extends past one basal body in all four species. This component goes past the trans basal body in Volvulina steinii and the cis basal body in E. elegans and P. illinoisensis. The flagellar apparatuses of these organisms are similar to those of G. pectorale and Volvox carteri but different from the other colonial volvocalean algae examined. The algae examined in this study plus G. pectorale and V. carteri probably share a common evolutionary history that postdates the transition from the unicellular to colonial habit. Such a shared evolutionary history is a requirement of the volvocine hypothesis. However, we have not observed progressive changes in the flagellar apparatus correlated with increasing cell number, differentiation, and sexual specialization. Thus, it is possible, but not certain, that G. pectorale, Volvulina steinii, E. elegans, P. illinoisensis, and Volvox carteri may form part of a volvocine lineage.  相似文献   

18.
The flagellar basal apparatus of the brown alga Ectocarpus siliculosus was re‐investigated in details using transmission electron microscopy and electron tomography. As a result, three‐dimensional structures with spatial arrangement of bands and microtubular flagellar rootlets were observed. Fibrous structures linking the anterior flagellar basal body to the major anterior rootlet (R3) or the bypassing rootlet was newly discovered in this study. A direct attachment from the minor anterior rootlet (R4) to the anterior and posterior basal bodies was also discovered, as were attachments from the minor posterior rootlet (R1) to the deltoid striated band and from the major posterior rootlet (R2) to the posterior fibrous band. The microtubular flagellar rootlets were connected to the bands and to the anterior or posterior basal body. These bands may have a role in maintaining the spatial arrangement of the anterior and posterior flagellar basal bodies and the microtubular flagellar rootlets. A numbering system of the basal body triplets was established by tracing axonemal doublets in the serial sections. From these observations, the precise position of two flagellar basal bodies, bands, and flagellar rootlets was determined.  相似文献   

19.
本文详细研究了1种海生4条鞭毛的单胞绿藻——广东四片藻鞭毛器的亚微结构和囊壳的形成。4条鞭毛着生于细胞前端凹陷的基部,鞭毛表面覆盖2层鳞片;基体呈纵向平行的“Z”字形排列;具纹纤维连接内外径向排列的两个基体;4个片层状的卵形盘(或称半桥粒(halfdesmosome))微管和纤维物质构成的复合体将鞭毛器和根丝体固着在质膜和囊壳上。根丝体通过两束交叉的微管带与两个邻近的外侧基体相连接。这种连接方式与其它已研究过的四片藻是不同的。囊壳的形成开始于内膜系统,特别是高尔基体。纤维丛和电子密集颗粒在其中合成、修饰,同时由高尔基体衍生的小泡转移到原生质体表面特定的区域,然后经若干步骤接合成完整的囊壳。这个区域与蛋白核的位置相关,表明聚合星状颗粒酶是在蛋白核位点制造或释放的,同时分泌到细胞外。囊壳沿边生长组装与细胞质发育产生特征性的前端鞭毛凹陷同时发生。  相似文献   

20.
The flagellar apparatus of Microthamnion kuet-zingianum Naegeli differs from, that of Chlamydomonas reinhardtii Dangeard in that the zoospores can autonomously orient their basal bodies for different types of swimming behavior, including forward, and backward progression with, stationary intervals. Reorientation of the basal regions of the flagella and of the basal bodies were documented by cinefilms and by stroboscopic and electron micrographs. Even when the flagella. were sheared off, the remaining stubs (containing the basal bodies) were capable of being reoriented, by the organism. Thus the mechanism of basal body reorientation cannot reside in the 9 + 2 flagellar shaft. Rather, the reorienting process involves a shortening or lengthening of the distal fiber and of the plasma membrane region overlying an anterior papilla. In their helical and spiral motions, the zoospores trace complicated, but surprisingly regular curves. Such motion might result from the inherent 3-dimensional structure and beat of the flagella. The eyespot has an invariable, highly asymmetric location within the cell in direct proximity with a specific microtubular band (MTE), but nevertheless may occur in either the anterior or posterior region of the chloroplast. Further, multiple eyespots may occur along the same side of MTE. This observation is consistent with the discovery (in Fucus sperm) that microtubules serve to align individual eyespot granules in eyespot-ontogeny. By this means the position of the eyespot within a cell could well be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号