首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome inversions may be involved in adaptation and speciation. We investigate ecological diversification among members of the Simulium arcticum species complex at different stages of chromosome divergence. Our analyses focus on two geographical scales. First, we assess ecological divergence of sibling species throughout North America using niche modelling methods. Then, using canonical correspondence analysis, we investigate habitat associations of sibling species and cytotypes in the northern Rocky Mountains ecoregion, where cytotypes tend to occur. Despite significant overlap in predicted distributions, all sibling species are ecologically unique. On the other hand, we discover various degrees of ecological divergence for cytotypes. Some cytotypes are ecologically distinct and perhaps are in their initial stages of incipient speciation. Other cytotypes are ecologically associated with one another or with particular sibling species. Thus, for members of the S. arcticum complex, ecological and chromosomal differences tend to develop early in lineage formation. Ecological distinctiveness of sibling species and cytotypes suggests that local adaptation may be involved in diversification of these chromosomal forms. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 13–27.  相似文献   

2.
Members of Rhogeessa are hypothesized to have undergone speciation via chromosomal rearrangements in a model termed speciation by monobrachial centric fusions. Recently, mitochondrial cytochrome-b sequence data tentatively supported this hypothesis but could not explicitly test the model’s expectations regarding interbreeding among karyotypic forms. These data showed potential evidence for hybridization or incomplete lineage sorting between the karyotypically distinct R. tumida and R. aeneus and identified multiple lineages of karyotypically identical R. tumida. Here, we present a more comprehensive test of speciation by monobrachial centric fusions in Rhogeessa. Our analysis is based on sequence data from two nuclear loci: paternally inherited ZFY and autosomal MPI genes. These data provide results consistent either with incomplete lineage sorting or ancient hybridization to explain alleles shared at low frequency between R. aeneus and R. tumida. Recent and ongoing hybridization between any species can be ruled out. These data confirm the presence of multiple lineages of the 2n = 34 karyotypic form (“R. tumida”) that are not each other’s closest relatives. These results are generally consistent with speciation by monobrachial centric fusions, although additional modes of speciation have also occurred in Rhogeessa. Phylogeographic analyses indicate habitat differences may be responsible for isolation and divergence between different lineages currently referred to as R. tumida.  相似文献   

3.
Underdominance for chromosomal rearrangements is the central assumption of several models of chromosomally based speciation including the cascade model, proposed for the Sceloporus grammicus complex. Several cytotypes of the S. grammicus complex hybridize at localities in central México. A hybrid zone between two of the most chromosomally divergent races (= cytotypes) of S. grammicus (F5, 2n = 34 and FM2, 2n = 44–46) was examined to assess the meiotic effects of heterozygosity at multiple chromosomes. Meiosis was examined in males heterozygous for “simple” Robertsonian fissions at chromosomes 1, 3, 4, and 6 and/or a pericentric inversion at chromosome 4. Analysis of synaptonemal complexes and chromosomal configurations at diakinesis showed trivalent formation in fission heterozygotes and heterosynapsis (lack of reverse-loop formation) in an inversion heterozygote. Analysis of metaphase II configurations revealed primarily balanced segregation and low levels of nondisjunction regardless of chromosomal background. The lack of underdominance associated with “simple” fission heterozygosity in this narrow hybrid zone contradicts the key premise of most chromosomally based models of speciation.  相似文献   

4.
G- and C-banded chromosomes ofAethomys namaquensis (2n=24),A. chrysophilus (2n=44), andPraomys coucha (2n=36) are compared and contrasted with publised material on Australian Muridae and North American Sigmodontidae. Direction and types of chromosomal rearrangements are established using cladistic methodology. An acrocentric morphology for chromosomes 5, 14, 15 and 20 (numbering system fromPeromyscus) are proposed as primitive for the common ancestor of the Muridae and Sigmodontidae rodent lineages. Reduced diploid number ofAethomys namaquensis is derived by eight tandem and five centric fusions since divergence from the common ancestor withA. chrysophilus. The two species ofAethomys share one derived metacentric chromosome that distinguishes them fromPraomys. Praomys has unique chromosomes which can be derived from the proposed primitive condition by five centric fusions and five pericentric inversions. It is concluded that karyotypic orthoselection for tandem and centric fusions is best explained by cellular or biochemical mechanisms rather than variation in population characteristics.  相似文献   

5.
One of the simplest models of chromosomal speciation is speciation by monobrachial centric fusion. This model is based on the assumption that a sterility barrier can develop between populations, in which fixed centric fusions show monobrachial homology, i.e. share only one chromosome arm. However, studies aimed at delineating intermediate stages of transition to reproductive isolation are lacking. In this paper, we describe a new area of chromosomal polymorphism in the house mouse, Mus musculus domesticus Schwarz and Schwarx, 1943, in Sicily (Italy). We trapped 79 mice at eighteen localities in an area of approximately 500 Km2 surrounding the largest active European volcano, Mount Etna. Combining G‐banding and chromosome painting we identified twelve different Robertsonian (Rb) metacentrics. Considering the high number of Rb fusions, some of them shared with other documented areas, the presently studied area of chromosomal polymorphism is very likely to represent a mixture of allochthonous and autochthonous Rb fusions. The Rb(9.16) is the most widespread metacentric (overall frequency 0.80). Two Rb metacentrics, Rb(4.10) and Rb(5.6), have similar overall frequency, 0.29 and 0.37, respectively, and are narrowly co‐distributed in ten populations. Nine fusions – Rb(2.13), Rb(1.3), Rb(12.17), Rb(8.17), Rb(2.14), Rb(10.14), Rb(11.17), Rb(3.15), and Rb(11.14) – show a low frequency (0.04–0.01) and mostly non‐overlapping localization, but each of them shares monobrachial homology with at least one other metacentric. The overall geographical distribution of different Rb fusions seems to match an early stage of race formation. The eventual role of the presently studied hybrid zone in the context of chromosomal speciation by monobrachial centric fusions is discussed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 722–731.  相似文献   

6.
In an attempt to unveil the origin of neo‐sex chromosomes in Ronderosia Cigliano grasshoppers, we performed a combined phylogenetic analysis based on morphological (external morphology and male genitalia) and molecular data (COI, COII, 16S and ITS2) to explore the chromosome evolution within the genus. We also analysed the distributional patterns of the various Ronderosia species and considered the possible role of chromosome rearrangements (CRs) in speciation processes within the genus in the light of ‘suppressed‐recombination’ models. We mapped the states of three chromosomal characters on the combined tree topology. The combined evidence supported Ronderosia as a monophyletic group. The cytogenetic analyses of the genus demonstrated the importance of rearranged karyotypes with single, complex and multiples neo‐sex chromosome determination systems in all species. The chromosome character optimisation suggests X‐autosome centric fusion as the mechanism responsible for neo‐sex chromosome formation in most Ronderosia species, except in R. dubia and R. bergii. Similar autosomes were involved in fusions with the ancestral X chromosome in Ronderosia, supporting previous hypotheses on the unique origin of X‐autosome fusion for the sex chromosome in the genus. As a source of chromosome variation, autosome‐autosome centric fusion played a secondary role in Ronderosia compared with other Dichroplini. Given the homogeneity in the morphological features, the sympatric distribution of closely related species and the intrinsic property of centric fusion as suppressors of the crossing over, we suggest that CRs may have played a key role during the speciation process within Ronderosia.  相似文献   

7.
Planipapillus, a clade of onychophorans from southeastern Australia, exhibits substantial chromosomal variation. In the context of a robust phylogeny based on nuclear and mitochondrial sequence data, we evaluate models of chromosomal evolution and speciation that differ in the roles assigned to selection, mutation, and drift. Permutation tests suggest that all chromosome rearrangements in the clade have been centric fusions and, on the basis of parsimony and maximum-likelihood methods with independent estimates of branch lengths, we conclude that at least 31 centric fusions have been fixed in Planipapillus. A likelihood-ratio test approach, which is independent of our point estimates of ancestral states, rejects an evolutionary model in which the mutation rate is constant and centric fusions are effectively neutral. In contrast to the nucleotide sequence data, which are consistent with neutrality and rate constancy, centric fusions in Planipapillus are underdominant, spontaneous fusion rates vary among lineages, or both. We predict an inverse relationship between rates of chromosomal evolution and historical population size. Chromosomal evolution may play a role in speciation in Planipapillus, both by interactions between centric fusions with monobrachial homology and by the accumulation of multiple weakly underdominant fusions.  相似文献   

8.
M. King 《Genetica》1984,64(2):101-114
Karyotypic data are presented for six additional species from the genus Gehyra collected in Australia, New Guinea and Fiji. C and G-banding of three of the very diverse species which all share the ancestral 2n=44 karyotype, further strengthens the phylogenetic model for the evolution of this complex. With 19 Australian species and chromosome races of Gehyra now karyotyped, it has been possible to evaluate the mode of chromosomal evolution and the role that chromosome change has played in speciation in this genus. It is clear that speciation in certain karyomorph groups has occurred allopatrically, without any gross chromosomal changes. However, in the numerous chromosome races and species which have been involved in colonizing radiations, chromosomal rearrangements have been intricately associated with the speciation process.  相似文献   

9.
The karyotypes of three of the four extant species of the genus Auliscomys (A. micropus, living in central [2n = 32, NF = 34] and southern [2n = 34, NF = 36, 37] Chile; A. sublimis [2n = 28, NF = 32] and A. boliviensis [2n = 22, NF = 32], which inhabit the Andean Altiplano) were analyzed. Comparisons of G-, C-, and AgNOR-banded karyotypes showed that extensive conservation of entire chromosomes and chromosomal regions had occurred during the evolution of this genus, with centromeretelomere tandem fusions and centric fusions probably being the most frequent chromosome changes. A chromosomal phylogeny, based on the chromosome homoeologies detected and parsimonious analysis of the nature and distribution of the inferred chromosomal changes, is proposed. This hypothetical phylogeny assumes that the ancestral telocentric karyotype would have undergone three consecutive tandem fusions, first originating the 2n = 32 (NF = 34) karyomorph exhibited by present-day specimens of A. micropus captured in central Chile and then the 2n = 28 (NF = 32) karyotype of A. sublimis. Subsequent centric fusions involving the tandem-fusion products would presumably have generated the 2n = 22 (NF = 32) A. boliviensis karyotype. Assuming some conditions related to early geographic distribution, this chromosomal phylogeny is in agreement with a paleogeographic model, which explains the present distribution of living Auliscomys species mainly on the basis of geologic and climatic events.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Structural rearrangements of chromosomes have played a decisive role in the karyotypic evolution of species. It is also known that inversions, translocations, fusions, fissions, heterochromatin variations and other chromosomal changes occur as transient events in natural populations. Herein we report the occurrence of a rare event of centric fission of a metacentric chromosome in a laboratory population ofDrosophila, called Cytorace 1. This centric fission has been fixed in a sub-population of Cytorace 1, resulting in a new chromosomal lineage called Fissioncytorace-1.  相似文献   

11.
Evidence of extensive chromosomal evolution in a biologically and economically important group of African murids of the Praomys/Mastomys complex was provided by examination of G- and C-band chromosomal data on P. coucha (2n = 32), P. fumatus (2n = 38), P. hildebrandti (2n = 32), P. jacksoni (2n = 28), P. misonnei (2n = 36), and P. cf. tullbergi (2n = 35). A coding system was developed for the chromosomal characters, and analyses were performed by a computer program to find the shortest tree with a minimum of 35 autosomal rearrangements (pericentric inversions, complex translocations, centric fusions, centric fissions, tandem fusions, euchromatic additions, and heterochromatic additions). The resulting phylogenetic hypothesis differs from traditionally accepted hypotheses regarding this complex group of rodents. The cytogenetic data show that 1) there is no support for the dichotomy of Mastomys/Praomys previously based on morphology, 2) the 2n = 32 species from eastern Africa (P. hildebrandti) is distinct from the 2n = 32 species from southern Africa (P. natalensis), and 3) there is a close association between P. jacksoni and P. cf. tullbergi. Polyacrylamide gel electrophoresis of liver membrane proteins demonstrated few differences in protein mobilities between species and even fewer between individuals of the same species taken from different habitats and localities in Kenya. Monoclonal antibodies produced against liver proteins of one species and tested for reactivity to other species confirmed the evolutionary similarity of species of this complex. This immunologic approach may provide a robust data set for future phylogenetic studies of muroid rodents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Several chromosome races of the mesquite lizard, Sceloporus grammicus complex, hybridize at localities in central Mexico. In most cases, the hybridizing populations are delineated by centric fissions at one or more of the macrochromosomes. One notable exception is the Tulancingo hybrid zone between the F5 and FM2 cytotypes. In addition to fission and/or inversion differences at chromosomes 1, 3, 4, and 6, these races differ by a complex rearrangement of chromosome 2, which carries the nucleolus-organizer region in this species. The meiotic consequences of heterozygosity at this chromosome were examined in males to assess the potential for this chromosome to contribute to the dynamics of the hybrid zone. Chromosomal analysis revealed several putative F1 hybrids and confirmed the production of nonparental chromosomal morphologies through recombination. Pachytene analysis revealed meiotic pairing difficulties associated with chromosome 2 in males heterozygous for the parental chromosomal morphologies. Significant aneuploidy is expected because of random disjunction of the chromosome-2 elements. As a result, these males likely suffer reduced fertiliity and fitness. In contrast, males heterozygous for recombinant chromosomal morphologies displayed low levels of meiotic irregularities and presumably exhibit higher fertility than individuals heterozygous for parental morphologies. It is hypothesized that the recombinant phenotypes facilitate gene flow between the F5 and FM2 cytotypes.  相似文献   

13.
It is only in the Hawaiian Islands that species of the otherwise marine genus Telmatogeton have evolved into freshwater. An analysis of polytene chromosomes and karyotypes of two marine species and five freshwater species revealed that paracentric inversions and centric fusions were important in chromosomal evolution. The sequence of polytene chromosome bands common to most species, established as the Telmatogeton standard sequence, is found in a population of T. torrenticola from West Maui. Most species and other populations of T. torrenticola may be derived from the standard sequence by paracentric inversions. Similarities with the standard band sequence places T. japonicus (n=7) rather than T. pacificus (n=4) in the proposed phylogeny as the species closest to the marine ancestor of the freshwater species. One of three species (T. fluviatilis from Oahu, T. torrenticola from West Maui, or an undescribed species from East Maui), each with seven pairs of chromosomes is considered to be closest to the original freshwater species. T. torrenticola is a complex species in which there is an accumulation of fixed inversions and centric fusions in stepwise fashion in populations from west to east (West Maui n=7; East Maui n=6; Kohala Mountains n=5 and Mauna Kea n=4 both from the island of Hawaii). The population of T. torrenticola from Molokai has a reduced chromosome number (n=4) and fixed inversions. T. abnormis and T. hirtus, the only species which exhibit differentiated sex chromosomes, may be derived from the standard sequency by paracentric inversions. T. abnormis (n=4) has a simple XY system and T. hirtus (n=3/4) has a complex XY1Y2 system. Unique sequences of bands, differences in staining intensity of puffs and bands, and an inversion form the basis for the differentiation of the various Y-chromosomes in these species.  相似文献   

14.
Complex Robertsonian rearrangements, with shared arms in different fusions, are expected to prevent gene flow between hybrids through missegregation during meiosis. Here, we estimate gene flow between recently diverged and chromosomally diverse rock-wallabies (Petrogale) to test for this form of chromosomal speciation. Contrary to expectations, we observe relatively high admixture among species with complex fusions. Our results reinforce the need to consider alternative roles of chromosome change, together with genic divergence, in driving speciation.  相似文献   

15.
The chromosomal locations of several families of tandem repetitive DNA sequences and the 5S rDNA were determined using fluorescence in situ hybridization (FISH) in the five North American charr species: Salvelinus namaycush, S. fontinalis, S. alpinus, S. malma, and S. confluentus. The pattern of hybridization of three centromeric repetitive sequences previously isolated from S. namaycush and S. alpinus was unique in each species. Dual-color FISH experiments showed that in several species many of the centromeres had the EcoRI-DraI family in addition to either the AluI-RsaI type A or type B families. The EcoRI-DraI family which was found only at the centromeres of acrocentric chromosomes in S. namaycush, S. fontinalis and S. malma was also found at centromeres of selected metacentrics in S. alpinus (one pair) and S. confluentus (four pairs) whose chromosomes have undergone additional centric fusions compared to the other species. The locations of 5S rDNA sequences were different in each species except for the two most closely related (S. alpinus and S. malma). Two whole-arm chromosome paint probes, one specific for the short and the other for the long arm of the lake charr sex chromosomes, hybridize to the same chromosome pair in all species. Results with other paint probes suggest that independent centric fusions have occurred in S. alpinus and S. confluentus which is consistent with the phylogenetic tree obtained previously for Salvelinus with cytogenetic and DNA data.  相似文献   

16.
Kinetochores of grasshoppers with Robertsonian chromosome fusions   总被引:2,自引:0,他引:2  
The pachytene karyotypes of three grasshopper species with 2 and 3 Robertsonian fusions were constructed from electron micrographs of serially sectioned spermatocyte nuclei. Tracings of the synaptonemal complexes permitted identification of each bivalent and its centromeric region. Chromosomes with the centromere in a terminal position have a knob of centric heterochromatin on the synaptonemal complex where it ends at the nuclear envelope. In Chorthippus and in Chloealtis the submetacentric Robertsonian fusion chromosomes each have a single centric knob in the appropriate place. In Neopodismopsis each of the 2 submetacentric chromosomes have a centric knob which is double in size and structure. In spermatogonial metaphases the submetacentric chromosomes of Neopodismopsis have 70–80 microtubules per kinetochore while the telocentric chromosomes have 30–40 tubules per kinetochore. These observations are correlated with evidence from light microscopy that Robertsonian fusions may produce mono- or dicentric chromosomes.  相似文献   

17.
Analyses of meiotic and mitotic chromosomes were undertaken in 16 taxa of Echinocereus belonging to 12 species and all seven taxonomic sections (sensu Taylor). Chromosome numbers are reported for the first time for eight taxa, and previously published chromosome counts are confirmed for the remaining eight. Both diploid and polyploid counts were obtained. Eleven (69%) of the taxa surveyed were diploid (2n = 22); the five varieties of E. engelmannii were polyploid (2n = 44). Overall, chromosome counts are available for 23 of the 48 proposed species (sensu Taylor). Of these, 19 (82%) are diploid, and four (18%) are polyploid. Polyploid cytotypes are most common in the primitive sections, e.g., sections Erecti and Triglochidiatus, which suggests that polyploidy is probably a derived condition in Echinocereus. Polyploid taxa range from medium to high latitudes and elevations relative to the overall distribution of the genus. Polyploidy, hybridization, and cryptic chromosomal rearrangements are thought to be the major causes of the speciation events of the genus.  相似文献   

18.
High-resolution chromosome analysis of eight Palaearctic and Oriental species of white-toothed shrews reveals almost complete chromosomal homology between the karyotypes studied, and extensive G-band homology is demonstrated even between species of the genera Crocidura and Suncus . Robertsonian translocations, tandem fusions, fissions, whole-arm reciprocal translocations, centromeric shifts, heterochromatin additions, and inversions are identified as the main mechanisms of chromosomal evolution. The evolutionary relationships of the Eurasian crocidurines under study are reconstructed and a hypothetical ancestral karyotype with 44 chromosomes is proposed.  相似文献   

19.
In this paper we discuss the contribution of cytogenetics to the systematics of Arvicanthis in East Africa, by reviewing all the known chromosomal cytotypes of the genus in the area. We also provide G‐ and C‐banding comparisons for two recently described karyotypes, provisionally named ANI‐5 (2n = 56, NFa = 62) and ANI‐6 (2n = 60, NFa = 72). This, therefore, brings the total number of known cytotypes in this area to 10. Five of these correspond to the species recognized by the latest rodent checklist, i.e. A. nairobae (2n = 62, NFa = 78), A. neumanni (2n = 52–53, NFa = 62), A. blicki (2n = 48, NFa = 62), A. abyssinicus (2n = 62, NFa = 64) and A. niloticus (2n = 62, NFa = 60–62). The taxonomic status of the remaining five cytotypes (A. cf. somalicus, 2n = 62 NFa = 62–63; ANI‐5, 2n = 56, NFa = 62; ANI‐6/6a 2n = 60, NFa = 72/76; ANI‐7, 2n = 56, NFa = 78; and ANI‐8, 2n = 44, NF = 72) is discussed. Finally, we reconstruct the phylogenetic relationships among all the known karyotypes on the basis of banding data available for the genus in Africa and show the occurrence of two main clades, each characterized by different types of chromosomal rearrangements. The times of the cladogenetic events, inferred by a molecular clock, indicate that karyotype evolution has accomplished almost all the dichotomic events from the end of the Miocene to the present day. The discovery of a large chromosomal differentiation between populations showing low genetic distances and intrapopulation chromosomal polymorphism suggests that the process of chromosomal differentiation in Arvicanthis is still ongoing and may possibly be responsible for speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号