首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A protocol is described for production of micrograms of DNA from single copies of flow‐sorted plant chromosomes. Of 183 single copies of wheat chromosome 3B, 118 (64%) were successfully amplified. Sequencing DNA amplification products using an Illumina HiSeq 2000 system to 10× coverage and merging sequences from three separate amplifications resulted in 60% coverage of the chromosome 3B reference, entirely covering 30% of its genes. The merged sequences permitted de novo assembly of 19% of chromosome 3B genes, with 10% of genes contained in a single contig, and 39% of genes covered for at least 80% of their length. The chromosome‐derived sequences allowed identification of missing genic sequences in the chromosome 3B reference and short sequences similar to 3B in survey sequences of other wheat chromosomes. These observations indicate that single‐chromosome sequencing is suitable to identify genic sequences on particular chromosomes, to develop chromosome‐specific DNA markers, to verify assignment of DNA sequence contigs to individual pseudomolecules, and to validate whole‐genome assemblies. The protocol expands the potential of chromosome genomics, which may now be applied to any plant species from which chromosome samples suitable for flow cytometry can be prepared, and opens new avenues for studies on chromosome structural heterozygosity and haplotype phasing in plants.  相似文献   

4.
Molecular chaperones dampen the effect of damaging mutations that would otherwise be removed from the population by natural selection. Here, I propose that the development of modern medical practice depressed this process, leading to a rise of phenotypically silent mutations in the genome. The background of misfolded proteins increases during ageing and, by competition, prevents the chaperone-mediated buffering of silent mutations. Phenotypically exposed mutations contribute to a more-abundant manifestation of multigene-diseases. This ‘chaperone overload’ hypothesis emphasizes the need for efficient ways to enhance chaperone capacity in ageing subjects, and will hopefully lead to the identification and ‘repair’ of silent mutations.  相似文献   

5.
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2. The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding‐associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.  相似文献   

6.
Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.  相似文献   

7.
The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.17 (95% CI 0.08–0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = ? 0.13 (95% CI ? 0.21 to ? 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload concentrations in these subjects.  相似文献   

8.
Mitochondria are one of the major sites of reactive oxygen species (ROS) production in the plant cell. ROS can damage DNA, and this damage is in many organisms mainly repaired by the base excision repair (BER) pathway. We know very little about DNA repair in plants especially in the mitochondria. Combining proteomics, bioinformatics, western blot and enzyme assays, we here demonstrate that the complete BER pathway is found in mitochondria isolated from potato (Solanum tuberosum) tubers. The enzyme activities of three DNA glycosylases and an apurinic/apyrimidinic (AP) endonuclease (APE) were characterized with respect to Mg2+ dependence and, in the case of the APE, temperature sensitivity. Evidence for the presence of the DNA polymerase and the DNA ligase, which complete the repair pathway by replacing the excised base and closing the gap, was also obtained. We tested the effect of oxidative stress on the mitochondrial BER pathway by incubating potato tubers under hypoxia. Protein carbonylation increased significantly in hypoxic tuber mitochondria indicative of increased oxidative stress. The activity of two BER enzymes increased significantly in response to this oxidative stress consistent with the role of the BER pathway in the repair of oxidative damage to mitochondrial DNA.  相似文献   

9.
The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload concentrations in these subjects.  相似文献   

10.
Antigen receptor gene rearrangements are initiated by the RAG1/2 protein complex, which recognizes specific DNA sequences termed RSS (recombination signal sequences). The RAG recombinase can also catalyze transposition: integration of a DNA segment bounded by RSS into an unrelated DNA target. For reasons that remain poorly understood, such events occur readily in vitro, but are rarely detected in vivo. Previous work showed that non-B DNA structures, particularly hairpins, stimulate transposition. Here we show that the sequence of the four nucleotides at a hairpin tip modulates transposition efficiency over a surprisingly wide (>100-fold) range. Some hairpin targets stimulate extraordinarily efficient transposition (up to 15%); one serves as a potent and specific transposition inhibitor, blocking capture of targets and destabilizing preformed target capture complexes. These findings suggest novel regulatory possibilities and may provide insight into the activities of other transposases.  相似文献   

11.
In Wernicke’s encephalopathy and thiamine deficiency (TD), the cause of this brain disorder, development of inflammation is an important aspect of the disease process. How this pathological mechanism relates to the neurologic impairment associated with TD, however, remains unclear. A key feature of the inflammatory process is the activation of microglia. In the present study, we evaluated the role of microglial activation in the pathophysiology of TD by examining the relationship between levels of CD11b/c and CD68, two proteins associated with microglial activation, and neurological dysfunction under conditions of TD. Rats with TD showed large increases in expression of both CD11b/c and CD68 in the vulnerable thalamus and inferior colliculus, with no change in mRNA levels in the relatively non-vulnerable frontal cortex. These alterations in CD11b/c and CD68 expression were reflected in dramatic upregulation of both proteins by immunoblotting and immunohistochemical methods. Co-treatment of rats with TD and the anti-inflammatory drug minocycline prevented microglial activation, and onset of neurological changes, including loss of righting reflex, was delayed by approximately 39 h, compared to animals with TD alone. In addition, co-treatment of rats with TD and N-acetylcysteine prevented the increase in CD11b/c and CD68, but did not alter the onset of neurological impairment. These results suggest that microglial activation plays a role in the development of neurological impairment in TD and possibly Wernicke’s encephalopathy, and that while development of oxidative stress may be involved in microglial activation, the basis of this neurologic dysfunction is likely to be multifactorial in nature.  相似文献   

12.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   

13.
The bacterial transposon Tn7 utilizes four Tn7-encoded proteins, TnsA, TnsB, TnsC and TnsD, to make insertions at a specific site termed attTn7. This target is selected by the binding of TnsD to attTn7 in a sequence-specific manner, followed by the binding of TnsC and activation of the transposase. We show that TnsD binding to attTn7 induces a distortion at the 5' end of the binding site and TnsC contacts the region of attTn7 distorted by TnsD. Previous work has shown that a target site containing triplex DNA, instead of TnsD-attTn7, can recruit TnsABC and effect site- specific insertion of Tn7. We propose that the DNA distortion imposed by TnsD on attTn7, like the altered DNA structure via triplex formation, serves as a signal to recruit TnsC. We also show that TnsD primarily contacts the major groove of DNA, whereas TnsC is a minor groove binding protein. The footprint of the TnsC-TnsD-attTn7 nucleoprotein complex includes and extends beyond the Tn7 insertion site, where TnsC forms a platform to receive and activate the transposase to carry out recombination.  相似文献   

14.
Perforin is a major contributor to NK cell control of tumor metastasis.   总被引:18,自引:0,他引:18  
We provide the first demonstration, using experimental and spontaneous models of metastasis in C57BL/6 (B6) (RM-1 prostate carcinoma) and BALB/c (DA3 mammary carcinoma) mice, that tumor metastasis is primarily controlled by perforin-dependent cytotoxicity mediated by NK1.1+ cells. MHC class Ilow RM-1 and DA3 tumor cells were sensitive in vitro to Fas-mediated lysis or spleen NK cells in a perforin-dependent fashion. Perforin-deficient NK cells did not lyse these tumors, and perforin-deficient mice were 10-100-fold less proficient than wild-type mice in rejecting the metastasis of tumor cells to the lung. Fas ligand mutant gld mice displayed uncompromised protection against tumor metastasis. Depletion of NK subsets resulted in greater numbers of metastases than observed in perforin-deficient mice, suggesting that perforin-independent effector functions of NK cells may also contribute to protection from tumor metastasis.  相似文献   

15.
16.
The structure of mutualistic networks provides insights into ecological and coevolutionary dynamics of interacting species. However, the spatial effect has only recently been incorporated as a factor structuring mutualistic networks. In this study, we evaluated how the topological structure and species turnover of ant–plant mutualistic networks vary over a spatial gradient. We showed that although the ant and plant composition of networks changed over space, the central core of generalist species and the structure of networks remained unaltered on a geographic distance of up to 5099 m in the southern Brazilian Amazon. This finding indicates that independently of variation in local and landscape environmental factors, the nonrandom pattern organization of these interacting assemblages do not change. Finally, we suggest that a stable core can increase the potential for coevolutionary convergence of traits among species from both sides of the interaction within the community. These findings contribute to our understanding of the maintenance of biodiversity and coevolutionary processes.  相似文献   

17.
Janne Soininen 《Oikos》2016,125(2):160-166
The spatial structure of communities has recently gained much attention in ecology. Spatial structure comprises an important element in communities, but the literature lacks a thorough investigation about possible among‐organism or among‐ecosystem differences in the degree of spatial structure. Here, I conducted a quantitative review to determine if the degree of spatial structure varied predictably between the major organism types and ecosystems. Spatial structure was quantified as the relative fraction of community variation explained purely by spatial variables (fraction S/E). I integrated data from 322 variation partition analyses both in a generalized linear model (GLM) and using a boosted regression tree method, and showed that a mean of 11.0% of the variation in community composition was explained purely by spatial variables. Across all taxa, a body size–S/E relationship was positive. In GLM, fraction S/E increased highly significantly with study extent, it was highest among terrestrial taxa and higher in ectotherms than in homoiotherms. Spatial structure was also higher in omnivores than in autotrophs. These results suggest that the degree of spatial structure is jointly driven by extrinsic factors such as study extent and ecosystem type, and intrinsic factors such as body size, thermoregulation and interactions between body size and dispersal mode. These results should be important not only for basic research, but also conservation and bioassessment programs would benefit from the information about the magnitude of spatial variation in nature. Synthesis Spatial processes comprise an important element in most ecological communities, but the degree to which spatial structure varies across organisms or ecosystems is poorly known. Here, a quantitative review of 322 variation partition analyses indicated that spatial component varied predictably across ecological communities – it was driven by study extent and ecosystem type as well as by species traits such as body size and thermoregulation. These results give deep insights into the magnitude of spatial variation in nature and should be highly beneficial for conservation and bioassessment programs that are built on the information about how communities vary in space.  相似文献   

18.
According to molecular sequence data Crustacea and not Myriapoda seem to be the sister‐group to Insecta. This makes it necessary to reconsider how the morphology of their eyes fit with these new cladograms. Homology of facetted eye structures in Insecta (Hexapoda in the sense of Ento‐ and Ectognatha) and Crustacea is clearly supported by identical numbers of cells in an ommatidium (two corneageneous or primary pigment cells, four Semper cells which build the crystalline cone and primarily eight retinula cells). These cell numbers are retained even when great functional modification occurs, especially in the region of the dioptric apparatus. There are two different possibilities to explain differences in eye structure in Myriapoda depending on their phylogenetic position in the cladogram of Mandibulata. In the traditional Tracheata cladogram, eyes of Myriapoda must be secondarily modified. This modification can be explained using the different evolutionary pathways of insect facetted eyes to insect larval eyes (stemmata) as an analogous model system. Comparative morphology of larval insect eyes from all holometabolan orders shows that there are several evolutionary pathways which have led to different types of stemmata and that the process always involved the breaking up the compound eye into individual larval ommatidia. Further evolution led on many occasions to so‐called fusion‐stemmata that occur convergently in each holometabolic order and reveals, in part, great structural similarities to the lateral ocelli of myriapods. As myriapodan eyes cannot be regarded as typical mandibulate ommatidia, their structure can be explained as a modified complex eye evolved in a comparable way to the development to the fusion‐stemmata of insect larvae. The facetted eyes of Scutigera (Myriapoda, Chilopoda) must be considered as secondarily reorganized lateral myriapodan stemmata, the so‐called ‘pseudo‐compound eyes’. New is a crystalline cone‐like vitreous body within the dioptric apparatus. In the new cladogram with Crustacea and Insecta as sister‐groups however, the facetted eyes of Scutigera can be interpreted as an old precursor of the Crustacea – Insecta facetted eye with modified ommatidia having a four‐part crystalline cone, etc. as a synapomorphy. Lateral ocelli of all the other Myriapoda are then modified like insect stemmata. The precursor is then the Scutigera‐Ommatidium. In addition further interpretations of evolutionary pathways of myriapodan morphological characters are discussed.  相似文献   

19.
Transgenic plants can be designed to be ‘phytosensors’ for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)‐transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co‐60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination.  相似文献   

20.
Transposition immunity is the negative influence that the presence of one transposon sequence has on the probability of a second identical element inserting in the same site or in sites nearby. A transposition-defective Mu derivative (MudJr1) produced transposition immunity in both directions from one insertion point in the Salmonella typhimurium chromosome. To control for the sequence preference of Mu transposition proteins, Tn10 elements were introduced as targets at various distances from an immunity-conferring MudJr1 element. Mu transposition into a Tn10 target was not detectable when the distance of separation from MudJr1 was 5 kb, and transposition was unencumbered when the separation was 25 kb. Between 5 kb and 25 kb, immunity decayed gradually with distance. Immunity decayed more sharply in a gyrase mutant than in a wild-type strain. We propose that Mu transposition immunity senses the domain structure of bacterial chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号