首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas chromatography-mass spectrometric analyses of purified extracts from cultures of Rhizobium phaseoli wild-type strain 8002, grown in a non-tryptophan-supplemented liquid medium, demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol (IEt), indole-3-aldehyde and indole-3-methanol (IM). In metabolism studies with 3H-, 14C- and 2H-labelled substrates the bacterium was shown to convert tryptophan to IEt, IAA and IM; IEt to IAA and IM; and IAA to IM. Indole-3-acetamide (IAAm) could not be detected as either an endogenous constituent or a metabolite of [3H]tryptophan nor did cultures convert [14C]IAAm to IAA. Biosynthesis of IAA in R. phaseoli, thus, involves a different pathway from that operating in Pseudomonas savastanio and Agrobacterium tumefaciens-induced crown-gall tumours.Abbreviations IAA indole-3-acetic acid - IAld indole-3-aldehyde - IAAm indole-3-acetamide - IEt indole-3-ethanol - IM indole-3-methanol - HPLC-RC high-performance liquid chromatography-radio counting - GC-MS gas chromatography-mass spectrometry  相似文献   

2.
ABSTRACT. Trypanosoma brucei gambiense , which causes human African trypanosomiasis, catabolizes the aromatic amino acid tryptophan via an initial aminotransferase catalyzed reaction to form several indole end products, which have been suggested to contribute to the pathogenesis of trypanosomiasis. To determine if this same pathway exists in T. evansi , the closely related trypanosome pathogen of domestic animals, tryptophan catabolism was examined in vitro and in vivo. As is the case with human African trypanosomes, T. evansi catabolized tryptophan to form indole-3-pyruvic acid and smaller amounts of indole-3-acetic acid and indole-3-lactic acid. Large concentrations of indole-3-pyruvic acid are excreted in urine of trypanosome-infected mice. However, indole-3-ethanol could not be detected in incubates of T. evansi or T. b. gambiense , even though the latter species had previously been reported to form this neutral metabolite. A new, previously unreported tryptophan metabolite was isolated and partially characterized from incubates of T. evansi and T. b. gambiense. Although the functional significance of tryptophan catabolism to trypanosomatids remains obscure, the pathway is quantitatively significant in all species examined thus far.  相似文献   

3.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   

4.
Summary Bacillus stearothermophilus was adapted to grow at 55°C and 37°C in a complex medium with almost equivalent yields in cell mass. In both temperature ranges the maximum specific growth rates (μmax) were identical. Cellular extracts of this bacterium showed remarkable differences in the activity levels of several enzymes, depending on the respective growth temperature. High activities of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase were observed in bacteria from thermophilic cultures (55°C) and the respiratory quotient exceeded 1.0. Under anaerobic conditions at 55°C μmax was the same as in aerobic cultures. No alcohol dehydrogenase was detected in cells from mesophilic cultures (37°C), however, and the level of glyceraldehyde-3-phosphate dehydrogenase was also extremely low under mesophilic conditions. Succinate dehydrogenase and isocitrate dehydrogenase activity appeared to be higher in bacteria grown at 37°C; the resspiratory quotient was always lower than 1.0. At 37°C, acetoin formation was observed regularly, a fermentation product which was never detected in 55°C-cultures. Under anaerobic conditions at 37°C a very low growth rate was found. When adapted to grow at 37°C or 55°C,B. stearothermophilus is apparently able to use different catabolic systems.  相似文献   

5.
Metabolic reactions involving the aliphatic side chain of tryptophan were studied in the holoparasitic dicotyledonous plants Orobanche gracilis Sm., O. lutea Baumg., and O. ramosa L. Unlike known autotrophic plants, the parasite metabolized l-tryptophan directly to indole-3-carboxaldehyde, which was further converted to indole-3-methanol and indole-3-carboxylic acid. Independently, these metabolites were also formed from d-tryptophan, tryptamine, indole-3-lactic acid, and indole-3-acetic acid. As in autotrophic plants, tryptophan and tryptamine were also converted, via indole-3-acetaldehyde, to indole-3-acetic acid, indole-3-ethanol, and its glucoside. The branch of tryptophan metabolism relevant to auxin biogenesis and catabolism is, therefore, not rudimentary in Orobanche but even more complex than in autotrophic higher plants.  相似文献   

6.
In this short technical report, we present a fast and simple procedure for sample preparation and a single-run Reversed Phase High Performance Liquid Chromatography (RP-HPLC) determination of seven indoles (indole-3-acetic acid, indole-3-acetamide, indole-3-acetonitrile, indole-3-ethanol, indole-3-lactic acid, tryptamine and tryptophan) in bacterial culture supernatants. The separation of the analytes, after a single centrifugal filtration clean-up step, was performed using a gradient elution on a symmetry C8 column followed by fluorimetric detection (λex = 280/λem = 350 nm). The calibration curves were linear for all of the studied compounds over the concentration range of 0.0625–125 μg mL?1 (r 2  ≥ 0.998) and the limits of detection were below 0.015 μg mL?1. The applicability of the method was confirmed by analysis of Pseudomonas putida culture supernatants.  相似文献   

7.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

8.
Auxin is thought to be an important factor in the induction of galls by galling insects. We have previously shown that both galling and nongalling insects synthesize indole-3-acetic acid (IAA) from tryptophan (Trp) via two intermediates, indole-3-acetaldoxime (IAOx) and indole-3-acetaldehyde (IAAld). In this study, we isolated an enzyme that catalyzes the last step “IAAld → IAA” from a silk-gland extract of Bombyx mori. The enzyme, designated “BmIAO1”, contains two 2Fe–2S iron–sulfur-cluster-binding domains, an FAD-binding domain, and a molybdopterin-binding domain, which are conserved in aldehyde oxidases. BmIAO1 causes the nonenzymatic conversion of Trp to IAAld and the enzymatic conversion of IAOx to IAA, suggesting that BmIAO1 alone is responsible for IAA production in B. mori. However, a detailed comparison of pure BmIAO1 and the crude silk-gland extract suggested the presence of other enzymes involved in IAA production from Trp.

Abbreviations: BA: benzoic acid; CE: collision energy; CXP: collision cell exit potential; DP: declustering potential; IAA: indole-3-acetic acid; IBI1: IAA biosynthetic inhibitor-1; IAAld: indole-3-acetaldehyde; ICA: indole-3-carboxylic acid; IAOx: indole-3-acetaldoxime; IEtOH: indole-3-ethanol; LC–MS/MS: liquid chromatography–tandem mass spectrometry; Trp: tryptophan  相似文献   


9.
Indole compounds secreted byFrankia sp. HFPArI3 in defined culture medium were identified with gas chromatography-mass spectrometry (GC-MS). WhenFrankia was grown in the presence of13C(ring-labelled)-L-tryptophan,13C-labelled indole-3-acetic acid (IAA), indole-3-ethanol (IEtOH), indole-3-lactic acid (ILA), and indole-3-methanol (IMeOH) were identified.High performance liquid chromatography (HPLC) and GC-MS with selected ion monitoring were used to quantify levels of IAA and IEtOH inFrankia culture medium. IEtOH was present in greater abundance than IAA in every experiment. When no exogenous trp was supplied, no or only low levels of indole compounds were detected.Seedling roots ofAlnus rubra incubated in axenic conditions in the presence of indole-3-ethanol formed more lateral roots than untreated plants, indicating that IEtOH is utilized by the host plant, with physiological effects that modify patterns of root primordium initiation.  相似文献   

10.
Aerobic Methylobacteria Are Capable of Synthesizing Auxins   总被引:1,自引:0,他引:1  
Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3–100 g/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism (Methylobacterium mesophilicumand Aminobacter aminovorans).The production of auxins by methylobacteria was stimulated by the addition of L-tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.  相似文献   

11.
Rubrivivax benzoatilyticus JA2 utilizes l-tryptophan as the sole source of nitrogen for growth, and it has a doubling time of ~11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography–mass spectroscopy (LC–MS) analysis. The conversion of l-tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.  相似文献   

12.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

13.
The compartmentation and metabolism of indole-3-acetic acid (IAA) was examined in protoplasts derived from needles ofPinus sylvestris L., leaves of normal plants ofNicotiana tabacum L., leaves ofN. tabacum plants carrying the T-DNA gene 1 (rG1 plants) and leaves ofN. tabacum plants carrying the T-DNA gene 2 (rG2 plants) by using a rapid cell-fractionation method. In all tissues, 30%–40% of the IAA pool was located in the chloroplast, while the remainder was found in the cytosol. Quantitative analysis of indole-3-ethanol (IEt) showed that in bothPinus andNicotiana the IEt pool was located exclusively in the cytosol. The only plant that contained endogenous indoleacetamide (IAAm) was therG1-mutant ofN. tabacum, expressing theAgrobacterium tumefaciens T-DNA gene 1. Cellular fractionation of protoplasts from this transgenic plant showed that the entire IAAm pool was located in the cytosol. Feeding experiments utilizing [5-3H]tryptophan, [5-3H]IEt, [1′-14C] and [2′-14C]IAA demonstrated that the biosynthesis and catabolism of IAA occurred in the cytosol in bothPinus and in the wild type and the different mutants ofNicotiana. Furthermore, the biosynthesis of IAAm in therG1 plants was also shown to be localized in the cytosol.  相似文献   

14.
The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.  相似文献   

15.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

16.
The end product of purine catabolism varies amongst vertebrates and is a consequence of independent gene inactivation events that have truncated the purine catabolic pathway. Mammals have traditionally been grouped into two classes based on their end product of purine catabolism: most mammals, whose end product is allantoin due to an ancient loss of allantoinase (ALLN), and the hominoids, whose end product is uric acid due to recent inactivations of urate oxidase (UOX). However little is known about purine catabolism in marsupials and monotremes. Here we report the results of a comparative genomics study designed to characterize the purine catabolic pathway in a marsupial, the South American opossum (Monodelphis domestica), and a monotreme, the platypus (Ornithorhynchus anatinus). We found that both genomes encode a more complete set of genes for purine catabolism than do eutherians and conclude that a near complete purine catabolic pathway was present in the common ancestor of all mammals, and that the loss of ALLN is specific to placental mammals. Our results therefore provide a revised history for gene loss in the purine catabolic pathway and suggest that marsupials and monotremes represent a third class of mammals with respect to their end products of purine catabolism.  相似文献   

17.
Summary Among the indole compounds formed when tryptophan 2-14C is metabolized by Rhizobium, indole-3-lactic acid (ILA) is specially studied. In the course of experiments carried out in the culture medium of growing Rhizobium and in suspensions of washed bacterial cells the amount of ILA formed is compared with that of indole-3-acetic acid (IAA) occurring simulataneously. The formation of ILA and that of IAA directly depend on a transamination reaction. A large quantity of ILA is present in suspensions of washed bacterial cells.When ILA alone, as precursor, is incubated with Rhizobium, several products are identified: IAA, indole-3-acetaldehyde and tryptophol. Tryptophan is also detected in the aqueous fraction and is labelled when ILA 2-14C is used. The pathway of this metabolism are discussed and a general scheme is suggested.  相似文献   

18.
19.
Tryptophan hydroxylase in the pineal gland of the rat was found to undergo a diurnal rhythm in activity with an elevated activity at night. The rhythm was abolished in constant light. Cycloheximide (15 mg/kg, i.p.), administered both at night and during the day, caused a rapid decay in activity suggesting that tryptophan hydroxylase was subject to a rapid turnover in vivo. The primary site of control appeared to be at the level of translation since actinomycin D had no effect. Some relevant properties of the enzyme were studied. Thiol-containing compounds were shown to substantially protect pineal tryptophan hydroxylase from inactivation at 0°C but provided little protection at higher temperatures. The inactivation process appeared to be independent of oxygen. The activity of the enzyme, lost after ageing at 0°C. could be recovered by incubation with dithiothreitol under anaerobic conditions. Fresh enzyme, or enzyme inactivated at 37°C could not be activated by this process. A re-examination of the action of p-chlorophenylalanine (PCPA) on pineal tryptophan hydroxylase revealed that an irreversible inactivation occurred within 6h (25% of initial activity) followed by a recovery within 24 h. The rapid turnover of the enzyme is the probable reason for the failure of previous studies to observe an irreversible inhibition of this enzyme by PCPA.  相似文献   

20.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号