首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 1. Changes in stiffness of the cell surface at fertilization and during cleavage in sea urchin eggs were determined by the magnetic particle method.
2. 2. The stiffness of the cell surface increased at fertilization, reached a maximum after about 1.5 min, then decreased and reached a minimum about 4 min after insemination, followed by a gradual increase, in the eggs of Temnopleurus toreumaticus at 25.5 to 26.5 °C.
3. 3. The stiffness of the cell surface increased during the diaster stage, reached a maximum 2 to 3 min before the onset of cleavage, then decreased to a minimum about 1 min before the onset of cleavage, increased again, reached a maximum during cleavage and then diminished, in the eggs of Temnopleurus toreumaticus at 25.5 to 26.5 °C. A similar stiffness change was observed in the eggs of Hemicentrotus pulcherrimus at 17 to 19 °C, occurring almost in parallel in both the equatorial and polar surfaces.
  相似文献   

2.
The intracellular distribution of calcium and phosphorus during metaphase and anaphase of the first cleavage in sea urchin eggs was studied with the electron-probe microanalyzer. This study allowed a comparison of the relative concentrations of both elements on the polar and cleavage furrow regions of the membrane and on the mitotic asters and cytoplasm. The results show that in most eggs, both calcium and phosphorus are more highly concentrated in the mitotic asters than in surrounding cytoplasm during both anaphase and metaphase. Calcium is more concentrated at the furrow region than at the polar region during metaphase but not anaphase. The role of calcium during mitosis was reviewed with special reference to the theories on the formation of the cleavage furrow along the equatorial zone between two mitotic centers.  相似文献   

3.
The stiffness of the starfish oocyte was determined from the degree of deformation when it was compressed by a definite force between a pair of parallel plates. The deformation of the oocyte increases during continued application of a constant force, indicating visco-elasticity of the cell. A cyclic change in stiffness of the oocyte accompanying meiotic divisions was found: the stiffness of the oocyte decreases during early stage of meiotic division, increases before the onset of the first polar body formation, then decreases, increases again before the onset of the second polar body formation, and decreases thereafter. Deuteration causes increase in stiffness of the oocyte.  相似文献   

4.
In cytokinesis of sea urchin eggs, the numerical density of astral microtubules extending close to the cell surface has been thought to determine the position of the cleavage furrow. In the present study, a new model was constructed to simulate the relationship between the microtubule density and the furrow formation. In the model, gradients of the microtubule density drive fluid membrane proteins whose accumulation triggers the formation of contractile-ring microfilaments. The model could explain the behavior of the cleavage furrow under various experimental conditions. These simulations revealed two aspects of furrow formation. One is that in some cases, the cleavage furrow appears in a surface region where the microtubule density has neither a minimum nor a maximum. In all furrow regions, however, the second derivative of the microtubule-density function has large positive values. Membrane proteins greatly slow down to accumulate in such a region. The other is that the cleavage furrow is mobile, not fixed in one position, because of the fluidity of membrane proteins. These results strongly suggested that the mitotic apparatus determines the position of the cleavage furrow by redistributing membrane proteins through gradients of the microtubule density at the cell surface.  相似文献   

5.
A large quantity of paraffin oil, sucrose solution, or sea water was injected into the eggs of the heart urchin Clypeaster japonicus shortly before the onset of the first cleavage. The injected oil became spherical, pushing the mitotic apparatus aside. The sucrose solution mixed with the protoplasm and caused disintegration of the mitotic apparatus, and the sea water formed a vacuole at the center of the cell. In all these cases, cleavage may take place almost normally in spite of the absence of the mitotic apparatus or its displacement within the cell. In some eggs, furrowing may take place when more than fifty per cent of the endoplasm has been replaced with sea water before onset of cleavage.  相似文献   

6.
In fertilized echinoderm eggs, the male and female pronuclei fuse to form the diploid nucleus even in the presence of aphidicolin, a specific inhibitor of eukaryotic DNA polymerase-alpha. The subsequent first cleavage is independent of chromosomes but dependent on spindle and amphiaster. The fate of DNA originally existing in the fused nucleus during achromosomal cleavage of fertilized sea urchin and starfish eggs induced by aphidicolin was determined using antidenatured DNA antibody. The nucleus is not formed in the divided daughter cells at the two-cell stage but the nuclear-envelope-free chromatin mass which is unassociated with mitotic apparatus remains in the center region of embryos, especially near the first cleavage furrow. These results indicate that the condensed and nonreplicated chromatin can not be associated with spindle and asters in the presence of aphidicolin.  相似文献   

7.
In the eggs of the newt, Cynops (Triturus) pyrrhogaster, change in stiffness of the cortex was measured in various regions at the time of the cleavage. Measurements were performed by Mitchison and Swann's cell elastimeter method with a modification, in which two fine pipettes were attached to the surface of one egg at the same time, in order to compare the rigidity of two regions. The stiffness of the cortex changed very little before the start of the first cleavage. However, just before the appearance of the first cleavage furrow, the stiffness increased rapidly at the animal pole region, which later returned to the former level. As the cleavage furrow progressed, a wave of high stiffness travelled meridionally as a belt along the surface from the animal pole region toward the vegetal region. At second cleavage, the cycle of change in stiffness was repeated.  相似文献   

8.
Propranolol, a beta-adrenergic receptor blocker, blocks the formation of the cleavage furrow, while karyokinesis is unaffected during first division in the sea urchins Paracentrotus lividus or Lytechinus pictus. This effect is reversed by adrenalin, indicating that it is mediated by an adrenergic mechanism. The staining of F-actin microfilaments by rhodamine phalloidin in eggs in which the cleavage is blocked by the drug has revealed that propranolol affects both the distribution and the organization of actin microfilaments. A low-voltage scanning electron microscopy (LVSEM) study of microvilli in these eggs shows an extensive rearrangement of the egg surface. Anti-tubulin immunofluorescence microscopy of eggs treated with propranolol shows that they form normal mitotic asters. This indicates that while cleavage is affected, mitotic spindle formation is not. These results suggest that neurotransmitter monoamines known to be present in the sea urchin egg might be involved in the reorganization of the actin cytoskeleton underlying the formation of the cleavage furrow.  相似文献   

9.
In order to understand the mechanism of unequal division, polar body formation was investigated using the oocytes of the starfish, Asterina pectinifera. Cortical actin filaments were quantitatively measured after staining the maturing oocytes with fluorescently labeled phalloidin using a computer and image-processing software. Before polar body formation, at first the actin filaments at the animal pole decreased and subsequently the animal pole bulged. On the other hand, actin filaments surrounding the animal pole increased gradually and made a cleavage furrow around the animal pole as the bulge grew. Then the furrow ingressed and finally a polar body formed. When the surface force was calculated according to the cell shape, the surface force decreased at the animal pole but the force at the contractile ring increased. When by micromanipulation the mitotic apparatus was detached and translocated to the cortex other than the animal pole, polar body formation occurred all over the cortex of the oocyte, which indicates that the response of the whole cortex to the mitotic apparatus is equal. These results indicate that the decrease in the actin filaments and surface force near the centrosome of the mitotic apparatus as well as the increase in the actin filaments and surface force at some distance of the centrosome is important for cytokinesis.  相似文献   

10.
We determined the tension over the entire surface of the sea urchin eggs during cytokinesis, on the basis of the intracellular pressure and cell shape. This allowed us to determine the temporal changes in both the distribution of local forces and the total force produced in the whole cell cortex. A spike-like peak at anaphase and a broader peak at the onset of furrowing were observed in the time-course of the total force. Treatment of the eggs with cytochalasin D, blebbistatin, ML-9, or ML-7 significantly lowered the total force when they inhibited cytokinesis, suggesting that the tension results mainly from the interaction between intact actin filaments and activated myosin II. Myosin II would function as a motor, not only in the furrow region, but over a wide area of the cell surface, because the sum of the tensions outside the furrow region was larger than that inside the furrow region throughout cytokinesis. The distribution of the local force revealed that a global increase in the cortical force started well before the onset of furrowing, and that the force inside the furrow region continued to increase despite the decrease in the force outside the furrow region after the onset of furrowing. The spatial and temporal patterns of the force over the entire surface support the hypothesis that there are two separate but coordinated actomyosin activation mechanisms, one of which induces global activation of the cortex and the other of which then maintains the contractility only inside the furrow region.  相似文献   

11.
Changes in the cortical organization at the animal pole are examined by scanning and transmission electron microscopy in the Tubifex egg undergoing second polar body formation. At very early anaphase of the second meiosis, the egg surface overlying the meiotic apparatus is undulated, but its neighboring surface appears to be smooth. Although a microfilamentous cortical layer is found in the smooth area, the cortical layer of the undulating area is thin and devoid of filamentous structures except for its central part where some filaments are observed. This local differentiation takes place normally in colchicine-treated eggs where the meiotic apparatus is destroyed. Along with the progression of the anaphase movement, the egg surface of the undulating area is, first, uplifted into a cone-shaped cytoplasmic bulge (presumptive polar body); then the height and surface area of the bulge gradually increase. The distal surface of the growing bulge appears to be undulated whereas the sides of the bulge are relatively smooth. Transmission electron microscopy reveals that a thick microfilamentous cortical layer is always localized at the proximal region of this bulge; other regions of the bulge are characterized by a thin cortical layer which is devoid of filamentous structure except for the apical portion of the bulge. Microfilaments at the base of the bulge are perpendicular or oblique to the egg surface. The cortical layer of the egg which is continuous to that of the proximal region of the bulge comprises microfilaments running parallel to the surface. The attainment of the bulge to its full size is followed by the development of the cleavage furrow along its base. The cleavage furrow appears to bisect the spindle midway between its poles. In cytochalasin B-treated eggs, where some cortical microfilaments are detected at the animal pole, a cytoplasmic bulge lower in height and wider in the diameter of its base than the normal one forms at the animal pole; however, it is subsequently resorbed into the egg. The formation of a cleavage furrow is not observed in these eggs. The mechanism of the polar body formation is discussed in the light of the present observations.  相似文献   

12.
Fodrin, a spectrin-like protein, is localized in gametes, zygotes, and embryos from sea urchins and mice. Mammalian fodrin comprises two polypeptides with molecular weights of approximately 240 kDa (alpha) and 235 kDa (beta). An antibody specific for mammalian alpha-fodrin cross-reacted with a 240-kDa polypeptide from sea urchin egg extracts. This indicates that sea urchins contain a protein of similar electrophoretic mobility and immunological properties to mammalian alpha-fodrin. When this antibody was used to stain the sea urchin gametes with indirect immunofluorescence, fodrin-specific fluorescence was localized to the acrosome of the sperm and was distributed over the entire egg near the surface in a punctate pattern similar to the distribution of polymeric actin. During sperm incorporation, the fodrin-specific fluorescence is found at the site of sperm incorporation, in the fertilization cone. After fertilization, the intensity of fodrin fluorescence increases. During mitosis and cytokinesis in sea urchins, the entire surface of the egg remains stained; the cleavage furrow also was stained but no more intensely than was the rest of the egg surface. Antibody labeling with colloidal gold followed by electron microscopy showed that fodrin was loated in the cytoplasm immediately beneath the plasma membrane. In unfertilized mouse oocytes, both actin and fodrin were stained most intensely beneath the membrane adjacent to the meiotic spindle. After insemination, the cell surfaces of the pronucleate egg and the second polar body were stained; however, the actin matrix surrounding the apposed pronuclei did not bind the fodrin antibody. During cytokinesis in the mouse, the cleavage furrow stained more intensely than did the rest of the egg cortex, and in embryos the cell borders were delineated. These results indicate that organisms as unrelated to mammals as sea urchins have fodrin-like proteins; the rearrangements of such proteins suggest that they participate in the actin-mediated events at the cell surface during fertilization and early development in both mice and sea urchins.  相似文献   

13.
Up to 60 sec after insemination, the content of arginine phosphate in sea urchin eggs remained constant at the same level as unfertilized eggs (0.76 μmole/106 eggs), and then began to increase, reaching a plateau (1.38 μmoles/106 eggs) at 180 sec after insemination, which was maintained until cleavage. During the first and the second cleavage, the content changed cyclically, falling abruptly by 15 to 25 % just before furrowing, and then returning to the initial level just after the onset of cleavage.  相似文献   

14.
Phosphorylation of myosin regulatory light chain (RLC) at Ser19 (mono-phosphorylation) promotes filament assembly and enhances actin-activated ATPase activity of non-muscle myosin, while phosphorylation at both Ser19 and Thr18 (di-phosphorylation) further enhances the ATPase activity. However, it has not well been addressed which type of phosphorylation is important in regulating myosin during cytokinesis. Here, we investigated subcellular localization in sea urchin eggs of mono-phosphorylated and di-phosphorylated RLC by both quantitative biochemical and spatiotemporal cytological approaches. Mono-phosphorylated RLC was dominant in the equatorial cortex throughout the whole process of cytokinesis. Inhibition of myosin light chain kinase (MLCK) decreased mono-phosphorylated RLC both in the cortex and in the cleavage furrow, and blocked both formation and contraction of the contractile ring. Two different types of ROCK inhibitor gave inconsistent results: H1152 blocked both RLC mono-phosphorylation in the cleavage furrow and contraction of the contractile ring, while Y27632 affected neither the mono-phosphorylation nor cell division. These results suggest that there may be other targets of H1152 than ROCK, which is involved in the RLC phosphorylation in the cleavage furrow. Furthermore, it was revealed that localization of myosin heavy chain in the cleavage furrow, but not in the cortex, was perturbed by inhibition of RLC mono-phosphorylation. These results suggested that RLC mono-phosphorylation by more than two RLC kinases play a main role in regulation and localization of myosin in the dividing sea urchin eggs.  相似文献   

15.
Cleavage in a saponin model of the sea urchin egg   总被引:2,自引:0,他引:2  
A cell model, in which cleavage could be induced, was obtained from fertilized sea urchin eggs by putting eggs that were in the first cleavage into a solution containing 3 X 10(-5) g/ml saponin and suitable amounts of ATP and Ca2+. The cell membrane became freely permeable to ATP and Ca2+ within 1 minute. The respective optimal concentrations of ATP and Ca2+ that advanced the cleavage furrow in this model were 2 mM and 10(-8) M. With the optimal ATP and Ca2+ concentrations, the cleavage furrow of the model advanced at a rate that differed little from that in living eggs. The cleavage furrow soon receded, however, when the concentration of ATP was decreased to less than 1 mM or increased to more than 3 mM, as well as when the concentration of Ca2+ was increased to more than 10(-7) M.  相似文献   

16.
In the eggs of a wide range of animal species, various factors that determine the blastomeres' presumptive fate are known to locate unevenly within the egg. In the embryos of these animals, cleavage occurs not just to increase cell numbers, but also to distribute the factors to the respective blastomeres, resulting in cell specialization at the later stages. In the early cleavage stages, before the establishment of a device such as desmosomes to directly join the blastomeres, some other means is needed to keep the blastomeres together and maintain the relative positions among them. In this study, we found that the embryos of the starfish Astropecten scoparius lack the hyaline layer seen in sea urchin embryos and that blastomeres adhere to the fertilization envelope (FE) via filamentous cellular projections (fixing processes). Electron microscopy revealed the fixing processes to be specialized microvilli formed, after the elevation of the FE, by the elongation of short microvilli that pre-exist in unfertilized eggs. After the first cleavage, the two blastomeres separate from each other and finally attach to the FE. In the subsequent cleavages, the blastomeres undergo repeated cell division without separating from the FE. Between the blastomeres and the FE, only shortened fixing processes were observed. Destruction of the fixing processes caused release of the blastomeres from the FE and disturbance of the relative positions of the blastomeres, resulting in abnormal development of the embryos. These observations suggest that the fixing process is a device to keep the egg placed centrally in the FE up to the first cleavage, and after the first cleavage and beyond to anchor the blastomeres to the FE so that the FE can be used as a scaffold for morphogenesis. Electron microscopy also suggests that the inner layer of the FE, which is derived from the contents of cortical granules, reinforces the adhesion of the fixing processes to the FE. Immuno-electron microscopy, using an antibody against sea urchin hyaline layer, showed that the inner layer of the FE of starfish eggs and the hyaline layer of sea urchin eggs, which are both derived from cortical granules, contain some common elements.  相似文献   

17.
Three types of models have been proposed about how the mitotic apparatus determines the position of the cleavage furrow in animal cells. In the first and second types, the contractile ring appears in a cortical region that least and most astral microtubules reach, respectively. The third type is that the spindle midzone positions the contractile ring. In the previous study, a new model was proposed through analyses of cytokinesis in sand dollar and sea urchin eggs. Gradients of the surface density of microtubule plus ends are assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. In the present study, the validity of each model is examined by simulating the furrow formation in conical sand dollar eggs with the mitotic apparatus oriented perpendicular to the cone axis. The new model predicts that unilateral furrows with cleavage planes roughly parallel to the spindle axis appear between the mitotic apparatus and the vertex besides the normally positioned furrow. The predictions are consistent with the observations by Rappaport & Rappaport (1994, Dev. Biol.164, 258-266). The other three types of models do not predict the formation of the ectopic furrows. Furthermore, it is pointed out that only the new model has the ability to explain the geometrical relationship between the mitotic apparatus and the contractile ring under various experimental conditions. These results strongly suggest the real existence of the membrane proteins postulated in the model.  相似文献   

18.
Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.  相似文献   

19.
Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.  相似文献   

20.
We have previously described a novel actin-capping protein, a 20,000-molecular weight protein (20K protein)-actin complex (20K-A) isolated from sea urchin eggs. In the present study, the localization and possible function of this 20K protein were investigated. The 20K protein was localized in the sea urchin egg cortex. Its distribution in the cortex as revealed by immunofluorescence microscopy did not change during or after fertilization up to the first mitosis, but it was concentrated to some extent in the cleavage furrow region. Exogenously added actin polymerized on the cortex isolated from unfertilized egg; however, actin did not polymerize on the cortex extracted with 0.6 M KCl, that is, the cell membrane, which lost the 20K protein. The cell membrane preincubated with 20K-A restored the activity to grow actin filaments. When decorated with myosin subfragment 1, almost all the actin filaments showed the arrowhead configuration pointing away from the membrane, indicating that they were connected to the membrane at their barbed ends. These results strongly suggest that the 20K protein connects actin filaments to the plasma membrane of sea urchin eggs. Because of this property we call this protein "actolinkin".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号