首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine structure and stereo-images of the Golgi apparatus and endoplasmic reticulum (ER) in the subcommissural organ (SCO) cells were visualized by the application of zinc-iodide osmium tetroxide (ZIO) impregnation, conventional electron microscopy and high voltage electron microscopy (HVEM). The Golgi apparatus in the SCO cells of rats, gerbils and hamsters consisted of flattened saccules stacked in parallel array. It showed a selective staining toward ZIO mixture and might form a complex network of tubular structures because of the presence of numerous fenestrations in the flattened Golgi saccules. The cytoplasm of the SCO cells in the rat and gerbil was crowded by dilated cisternae of the ER with a few flattened profiles. In the hamster SCO cells, however, the dilated cisternae of the ER were not observed. Flattened cisternae of ER in all species studied showed a positivity for ZIO impregnation and formed a complex tubular network, whereas dilated cisternae of the ER in the rats and gerbils did not show any reactivity. It was thus determined that the observation of thin and thick sections selectively stained with appropriate reagent for defined cellular organelles under conventional electron microscopy and HVEM offered valuable information about three-dimensional organization of the cell. A definite species-specific variation of SCO ultrastructure and cytochemistry was also demonstrated.  相似文献   

2.
The maturation of the endoplasmic reticulum (ER) of rat kidney tubule cells was studied with an osmium impregnation technique. Thick sections (0.3-0.6 micron) of kidney tissue were made after a five-day impregnation with osmium tetroxide and examined by standard transmission electron microscopy at 80-100 kV. Studies were performed on rat foetuses from 18-21 days of gestation, on newborns, and on 2-20 day old animals. At the undifferentiated stage, only a small percentage of the tubule cells were impregnated; in these, the perinuclear sac was stained and a few nuclear pores were already seen. Rudimentary, but thick canalicular projections seemed to originate from the perinuclear sac and become more extensive with maturity. Flattened saccules appeared later and fenestrations were seen in proximal tubule cells only when they seemed to have reached their functional specialization. In some cells, only the Golgi apparatus was stained. In the distal tubule cells, there was also progressive formation of a network consisting first of canaliculi and later of saccules which were rarely fenestrated. The osmium impregnation technique appears to be useful as an index of the ER organization development.  相似文献   

3.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

4.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

5.
The tridimensional structure of the Golgi apparatus has been studied in the absorptive cells of the mouse colon by means of reduced osmium postfixation and phosphatase cytochemistry. In thick sections of tissue impregnated with osmium tetroxide or treated with a technique to demonstrate TPPase activity, the Golgi formed a continuous ribbon-like structure capping the upper pole of the nucleus. Along the longitudinal axis of this ribbon, compact zones made up of superposed flattened saccules alternated with less compact zones which consisted of highly perforated saccules or bridging anastomosed tubules. In the cis-trans axis, the following elements were observed: (1) a cis element consisting of a continuous osmiophilic tubular network; (2) two or three subjacent elements selectively perforated by wells; (3) a trans compartment made up of two or three TPPase-reactive sacculotubular elements, some showing a "peeling-off" configuration. In some regions, the first flattened saccule of this trans compartment displayed discrete ovoid dilatations, located in compact zones and containing a dense granulofibrillar material; in the subjacent elements this material was seen concentrated in nodular swellings, at the intersection of the meshes of anastomosed membranous tubules. 100-300 nm vesicles containing a similar dense granulofilamentous material were observed in the trans Golgi zone and interspersed in the supranuclear cytoplasm between the Golgi zone and the apical surface of the cell. Smaller vesicles 80-100 nm in diameter containing a fine dusty material were also seen in proximity. These morphological observations suggested that at least two kinds of material were segregated in the saccules of the trans compartment and packaged in vesicles of two class sizes that detached from the Golgi stack on its trans aspect.  相似文献   

6.
The 3-dimensional structure of the Golgi apparatus has been analyzed in thin and thick sections of nonciliated epithelial cells of ductuli efferentes of rat by use of low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of tissue impregnated with osmium, the Golgi apparatus appeared at low magnification as a continuous network forming a corona at the apical pole of the nucleus. At higher magnification and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following structural features were observed. In the longitudinal axis of the Golgi network there were alternating compact and noncompact zones. The compact zones were composed of 6-8 flattened, poorly fenestrated saccules in close apposition to each other and forming stacks. The noncompact zones were composed of a number of highly fenestrated and slightly distended saccules, which were continuous with and bridged the saccules of the compact zones. In the cis-trans axis of the Golgi apparatus the following compartments were observed: (a) On the cis face there was a continuous osmiophilic tubular network referred to as the cis element; (b) a cis compartment composed of 3 or 4 NADPase-positive saccules perforated with pores in register forming wells that contained small vesicles; (c) a trans compartment composed of 1 or 2 TPPAse-positive elements underlying the NADPase ones, followed by 1 or 2 CMPase-positive elements that showed a flattened saccular part continuous with a network of anastomotic tubules. These tubular networks curved away from the overlying elements, giving these elements a 'peeling-off" configuration. These elements referred to as sacculotubular elements were discontinuous along the Golgi network. This compartment also included shriveled trans-tubular networks detached from the overlying sacculotubular elements and seemingly undergoing fragmentation into vesicles and tubules. The structural features of the elements of the trans compartment were indicative of continuous renewal.  相似文献   

7.
The subcommissural organ (SCO) of the golden hamster (Mesocricetus auratus) was studied by conventional electron microscopy, freeze-fracture technique, zinc-iodide-osmium (ZIO) and acid phosphatase cytochemical reactions. The ultrastructure of hamster SCO cells shows a few flattened cisternae of rough endoplasmic reticulum (ER) without dilated ones in the cytoplasm. The Golgi apparatus is very well developed. Freeze-fracture studies also indicate only short profiles of flattened ER in the cytoplasm endorsing the absence of dilated ER cisternae. After the treatment with ZIO mixture, reaction products were observed over flattened cisternae of the ER and the nuclear envelope. The Golgi apparatus was also reactive toward the ZIO mixture. Acid phosphatase activities are localized in the inner one or two saccules of the Golgi apparatus and dense bodies. From these results we suggest that (1) hamster SCO cells do not accumulate secretory material in the cytoplasm in the form of discrete secretory granules or dilated cisternae of ER, and (2) hamster SCO cells may possess extremely high secretory activity or may not be actively involved in secretory function at all as in rats or other rodents.  相似文献   

8.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in thin and thick sections of mucous cells of mouse Brunner's glands by using low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of glands impregnated with osmium or treated to detect nicotinamide adenine dinucleotide phosphatase (NADPase) or thiamine pyrophosphatase (TPPase) activity, the Golgi apparatus appeared, at low magnification, as a continuous network located in the supranuclear region. At higher magnifications and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following components were observed: on the cis-face of the Golgi stacks, an osmiophilic tubular network referred to as the cis-element; a cis-saccular-compartment composed of a distended porous saccule slightly reactive for NADPase and three or four underlying NADPase-positive, flattened, poorly fenestrated saccules; a trans-saccular-compartment consisting of four to six TPPase-positive saccules or sacculo-tubular elements, prosecretory granules, and "peeling off" trans-tubular networks. The saccules of the cis-compartment were often perforated by large pores in register. The cavities thus formed in the stacks were called wells and were pan-shaped with a mouth directed toward the cis-face of the stacks and a bottom closed by TPPase-positive saccules. The wells always contained 80-nm vesicles. The saccules of the trans-compartment were involved in the formation of secretory granules according to the following proposed sequence of transformation. The secretion product appeared initially as a granular material evenly distributed throughout a slightly distended, poorly fenestrated saccule. These saccules appeared to transform into fenestrated elements with irregular pores and with parts of them taking on the appearance of a tubular network; they were thus referred to as sacculotubular elements. The secretory material initially distributed throughout these elements accumulated in nodular dilatations randomly distributed along the tubular portions of the elements. The dilatations, considered as prosecretory granules, increased in size as they drained the secretory material from the rest of the sacculotubular elements. Such prosecretory granules, large and irregular in shape, "peeled off" from the stacks of saccules with residual saccular or tubular structures still attached to them, some of the latter forming trans-tubular networks. The prosecretory granules detached from such membranous residues, condensed, and finally transformed into spherical secretion granules.  相似文献   

9.
The three-dimensional structure of the whole Golgi apparatus and of its components in type A ganglion cells was examined in thin and thick sections by low- and high-voltage electron microscopy. At low magnification, in 10-micron-thick sections of osmicated cells, the Golgi apparatus formed a broad, continuous perinuclear network. At higher magnification and in thinner sections of cells impregnated with uranyl acetate-lead-copper citrate or postfixed in K-ferrocyanide-reduced osmium, the Golgi apparatus appeared as a heterogeneous structure in which saccular regions characterized by stacks of saccules alternated with intersaccular regions made up of branching membranous tubules which bridged the saccules of adjacent stacks. The saccular regions consisted of the following superimposed elements: a cis-osmiophilic element made up of anastomosing tubules; two or three saccules negative for the phosphatases tested (i.e., nicotinamide adenine dinucleotide phosphatase = NADPase, thiamine pyrophosphatase = TPPase, and cytidine monophosphatase = CMPase); two saccules showing TPPase activity; and one to three trans-sacculotubular elements showing a "peeling-off" configuration, one of which showed CMPase activity. The saccules (phosphatase-negative) on the cis-side of the Golgi stacks showed, in addition to small circular pores, larger perforations in register. The cavities thus formed in the stacks of saccules, called "wells," always associated with small 80-nm vesicles, had a pan shape with the mouth directed toward the cis-face and the bottom closed by a TPPase-positive saccule. In face views of the saccules, the smallest of these perforations showed either a crescent shape, due to the presence of a bud on one side of the perforation, or a circular shape with a single small 80-nm vesicle in the center which was occasionally attached to the saccule by a filiform stalk. Such smaller cavities were considered as the precursors of the larger perforations and eventually of the wells. The small 80-nm vesicles seen in the small cavities or in the wells appeared to form in situ and possibly migrate toward the cisternae of endoplasmic reticulum seen proximal to the cis-face of the stack of saccules. Small 80-nm vesicles were also numerous in the intersaccular regions, along the lateral- and trans-aspects of the Golgi stacks, while larger, 150-to 300-nm vesicles, coated and uncoated, were seen only on the trans-face of the Golgi stacks in proximity to the trans-sacculotubular elements which appear to "peel off" from the Golgi stacks.  相似文献   

10.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

11.
Glutaraldehyde-fixed testes were stained "en bloc" with the Ur-Pb-Cu technique of Thiéry and Rambourg ('76) or post-fixed and stained with the osmium tetroxide-potassium ferrocyanide method of Karnovsky ('71). Thin or thick (up to 3 micron) sections were examined with the Philips (301 or 400) EM or the high voltage EM. Stereopairs were prepared with photographs of tilted specimens (+/- 7 degrees). At low magnification, in thick sections (0.5-3 micron) stained with Ur-Pb-Cu, the whole Golgi apparatus formed a single network of interconnected wavy ribbon or platelike structures extending from the juxtanuclear region toward the apex of the cell. At higher magnifications, with the two staining techniques, this Golgi network showed two distinct types of regions: the "saccular region" corresponding to the conventional stack of saccules and the "intersaccular connecting region" made up of anastomotic tubules which bridge adjacent stacks. In the saccurlar regions, there was, on the cis-face of the stack, a tight polygonal meshwork of anastomotic tubules (osmiophilic element). Underlying it there were three to seven closely apposed saccules perforated with pores of various diameters, and finally, on the trans-face, a network of tubules was usually connected to the last saccule of the stack, which seemed to peel off" from the pile. The intersaccular connecting regions showed proximal and distal zones with regard to the associated stacks. The proximal zone was made up of superimposed and parallel polygonal networks of membranous tubules which were continuous with corresponding saccules of the stack. In the distal zone they interdigitated, intertwined, anastomosed and bridged adjacent saccular regions; others turned at right angles and established connections with tubular extensions arising at various levels of the same stack. While cisternae of endoplasmic reticulum were contiguous with tubules or saccules located on the transface of the Golgi apparatus, a close association between the ER cisternae and the cis-face of the stacks was not usually observed.  相似文献   

12.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

13.
The glucose-6-phosphatase (G6Pase) activity of cytoplasmic components of spermatocytes and spermatids of the rat was examined by electron microscope cytochemistry using cerium chloride as a capture agent. G6Pase activity, a recognized ER-resident enzyme, was present in all ER cisternae of spermatocytes. In spermatids, while some ER cisternae were G6Pase-reactive, others were negative or only slightly reactive, indicating an unequal distribution of the enzymatic activity throughout the network of ER cisternae in these cells. In spermatocytes, the cis- and trans-elements of the stacks of Golgi saccules were slightly but significantly reactive for G6Pase. In the Golgi apparatus of spermatids, the cis-element, 4 or 5 underlying saccules, as well as one or two thick trans Golgi elements were G6Pase reactive. The G6Pase activity of the various Golgi elements, like that of the ER cisternae was not affected by the pH of the medium and was completely inhibited by Na-vanadate, a known G6Pase inhibitor. Sertoli and Leydig cells, submitted to the same cytochemical conditions, showed complete G6Pase reactivity of their ER; however in Sertoli cells, all Golgi components were consistently negative while in Leydig cells the cis- and trans-elements of the Golgi stacks were slightly reactive, as in spermatocytes. Thus, the G6Pase reactivity of Golgi elements, appeared variable from one cell type to another. The compact juxtanuclear Golgi apparatuses of spermatocytes and spermatids were both associated with numerous G6Pase reactive ER cisternae; some were present at their surface, others crossed their cortices between Golgi stacks and formed elaborate networks in their cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The dense vacuoles, considered to be the classic Golgi apparatus in the root meristem ofFagopyrum, were studied by the following methods: 1. Impregnation methods for the demonstration of the Golgi apparatus, 2. cytochemical methods, 3. electron microscopic methods in the light microscope and 4. the electron microscope. A comparison was made with the classic Golgi apparatus in animal cells in the light and electron microscope. Dense vacuoles inFagopyrum and also evidently in other plants, were taken for the classic Golgi apparatus on account of their morphological similarity to the Golgi apparatus in animal cells on impregnation with silver and osmium and their staining preperties with lipoid methods. Dense vacuoles differ from the classic Golgi apparatus in other chemical properties, such as content of phenol substances, etc. No formations were found in animal cells which were similar to dense vacuoles on investigating by electron microscopy. In the electron microscope dense vacuoles have the appearance of derivatives of the normal light vacuoles known in plant cells. They therefore belong to vacuome of plant cell and cannot be analogous to the classic Golgi apparatus in animal cells. Thus the use of the term Golgi apparatus for dense vacuoles is not well founded. A comparison was made of fixation and impregnation used in the light microscope with fixation in the electron microscope. After fixation with permanganate, dense vacuoles have the same shape as after impregnation. After fixation with permanganate, they stain an intense black in the same way as after impregnation with silver and osmium. The form of the vacuoles is dependent on the fixation used. The comparison was made in the light microscope.  相似文献   

15.
DETECTION OF COMPLEX CARBOHYDRATES IN THE GOLGI APPARATUS OF RAT CELLS   总被引:28,自引:17,他引:11       下载免费PDF全文
Two methods used for the electron microscopic detection of glycoproteins were applied to a variety of cell types in the rat; one involved successive treatment of sections with periodic acid, chromic acid, and silver methenamine; and the other, a brief treatment with a chromic acid-phosphotungstic acid mixture. The results obtained with the two methods were identical and, whenever the comparison was possible, similar to those obtained with the periodic acid-Schiff technique of light microscopy. In secretory as well as in nonsecretory cells, parts of the Golgi apparatus are stained. The last saccule on one side of each Golgi stack is strongly reactive (mature face), and the last saccule on the other side shows little or no reactivity (immature face); a gradient of reactivity occurs in between these saccules. The more likely explanation of the increase in staining intensity is that carbohydrate is synthesized and accumulates in saccules as they migrate toward the mature face. In many secretory cells, the mature face is associated with strongly stained secretory granules. Other structures stained are: (1) small vesicles, dense and multivesicular bodies, at least some of which are presumed to be lysosomal in nature; (2) cell coat; and (3) basement membrane. The evidence suggests that the Golgi saccules provide glycoproteins not only for secretion, but also for the needs of the lysosomal system as well as for incorporation into the cell coat and perhaps basement membrane.  相似文献   

16.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in sections of pancreatic acinar cells by using stereopairs of electron microscope photographs. Pancreatic tissue fixed in glutaraldehyde was postfixed in reduced osmium, and the sections were stained with lead citrate. Tissues were also treated to demonstrate phosphatase activity (i.e., nicotinamide adenine dinucleotide phosphatase, NADPase; thiamine pyrophosphatase, TPPase; cytidine monophosphatase, CMPase). The following stacked components were observed along the branching, anastomotic, continuous, ribbonlike Golgi apparatus. 1) On the cis-face of the Golgi stack there was a tubular membranous network known to be osmiophilic and referred to as the cis-osmiophilic tubular network or cis-element. 2) A first, poorly fenestrated saccule, unreactive for the phosphatases tested, was slightly distended in places and contained a fluffy granulofilamentous material. 3) The subjacent three or four saccules, reactive for NADPase and/or TPPase, showed dilated portions containing a granulofilamentous secretory material similar to that filling the rest of the saccule. They also showed nondilated portions perforated with large fenestrations, some of which were in register and formed wells containing 80-nm vesicles. The dilated portions of these saccules were present at random along the length of the saccules and were not located exclusively at their edges. 4) The remaining one or two elements of the stack, CMPase positive, showed dilated spheroidal portions or prosecretory granules containing a homogeneous secretory material and flattened fenestrated regions free of secretory material and having the appearance of networks of narrow membranous tubules. 5) Lastly on the trans-aspect of the stack there were detached prosecretory granules reactive for CMPase and surrounded by a corona of small vesicles, and smooth-surfaced spherical CMPase-negative granules having a denser content that were identified as fully formed secretion granules; there were also occasional free trans-tubular networks strongly reactive for CMPase that appeared to undergo fragmentation and numerous small vesicles free from acid-phosphatase activity. These various images were interpreted as indicating that prosecretory granules formed in relation to two or three fenestrated saccules on the trans-side of the stack. Such granules, following their detachment from the trans-face of the stack, their separation from trans-tubular networks, and condensation of their content, yielded mature secretion granules.  相似文献   

17.
In rabbit luteal cells embedded in glycolmethacrylate and stained with PTA at low pH highly glycosylated membrane patches can be observed after vesiculation of the trans-Golgi network. As these membranes could be prelysosomal, their sialic acid content was investigated by post-embedding labeling with Limax flavus agglutinin (LFA)/fetuin-Au. Additional labeling of the Golgi apparatus was performed with Wheat germ agglutinin (WGA)/ovomucoid Au, Ricinus communis agglutininI (RCAI)/Au and Helix pomatia agglutinin (HPA)/Au. The sections were then counterstained with PTA at low pH, which allows a clear distinction between the elements of the trans-Golgi network (G2-G1) and the saccules of the stack (g). With WGA, LFA and RCAI the trans-Golgi network was observed to be clearly more reactive than the stack. After vesiculation most intense labeling was found over the highly glycosylated vacuolar membranes derived from the G2-element. The limiting membrane of lysosomes, the MvB's and the plasma membrane also reacted strongly. Colloidal gold particles were also found over the membranes of the vacuoles derived from G1. The Golgi stack showed a lower reactivity and label for all three lectins could be found over three to four saccules of the stack (g3-g4). The matrix of the lysosomes was slightly labeled. Labeling with HPA was absent from the trans saccules and was consistently found in the cis and cis-most (g4-g5) saccules of the stack. Some cytoplasmic vesicles near the cell border were also labeled. With our procedure the Golgi apparatus can easily be detected and it is apparent that in rabbit luteal cells the highest lectin reactivity is found in the trans-Golgi network.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary The ultrastructure and cytochemistry of the secretory granules of the male hamster submandibular salivary gland were studied. After fixation in glutaraldehyde followed by osmium tetroxide the granules exhibit a characteristic bipartite substructure, with an electron lucid crescenteric rim and a more dense central core. A differentiation into two regions of the granules could also be visualized in specimens primarily fixed in Millonig's osmium tetroxide or in potassium permanganate. The electron lucid peripheral portion of the membrane bounded secretory granules further displays a strong positive reaction after staining of ultrathin sections with the periodic acid-chromic acid-(PA-CrA)-silver technique. The strong periodate reactivity of the rim relative to the core, suggests a difference in mucin composition of the two granule regions. With the PA-CrA-silver staining technique a positive reaction was also observed within the Golgi apparatus of the acinar cells.  相似文献   

19.
Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A single intravenous injection of L-[3H]fucose, a specific glycoprotein precursor, was given to young 35–45 g rats which were sacrificed at times varying between 2 min and 30 h later. Radioautography of over 50 cell types, including renewing and nonrenewing cells, was carried out for light and electron microscope study. At early time intervals (2–10 min after injection), light microscope radioautography showed a reaction over nearly all cells investigated in the form of a discrete clump of silver grains over the Golgi region. This reaction varied in intensity and duration from cell type to cell type. Electron microscope radioautographs of duodenal villus columnar cells and kidney proximal and distal tubule cells at early time intervals revealed that the silver grains were restricted to Golgi saccules. These observations are interpreted to mean that glycoproteins undergoing synthesis incorporate fucose in the saccules of the Golgi apparatus. Since fucose occurs as a terminal residue in the carbohydrate side chains of glycoproteins, the Golgi saccules would be the site of completion of synthesis of these side chains. At later time intervals, light and electron microscope radioautography demonstrated a decrease in the reaction intensity of the Golgi region, while reactions appeared over other parts of the cells: lysosomes, secretory material, and plasma membrane. The intensity of the reactions observed over the plasma membrane varied considerably in various cell types; furthermore the reactions were restricted to the apical surface in some types, but extended to the whole surface in others. Since the plasma membrane is covered by a "cell coat" composed of the carbohydrate-rich portions of membrane glycoproteins, it is concluded that newly formed glycoproteins, after acquiring fucose in the Golgi apparatus, migrate to the cell surface to contribute to the cell coat. This contribution implies turnover of cell coat glycoproteins, at least in nonrenewing cell types, such as those of kidney tubules. In the young cells of renewing populations, e.g. those of gastro-intestinal epithelia, the new glycoproteins seem to contribute to the growth as well as the turnover of the cell coat. The differences in reactivity among different cell types and cell surfaces imply considerable differences in the turnover rates of the cell coats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号