首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75% glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at nu(A0) approximately 1967 cm-1, nu(A1) approximately 1947 cm-1, and nu(A3) approximately 1929 cm-1 between 60 and 300 K. Below 160 K the photodissociated CO rebinds from the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential. Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the heme is fastest for the A0 substate, intermediate for the A1 substate, and slowest for A3. Rebinding between 200 and 300 K displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A substates. The interconversion rates between A1 and A3 are determined from the time when the scaled kinetic traces of the two substates merge. Fluctuations between A1 and A3 are much faster than those between A0 and either A1 or A3, so A1 and A3 appear as one kinetic species in the exchange with A0. The maximum-entropy method is used to extract the distribution of rate coefficients for the interconversion process A0 <--> A1 + A3 from the flash photolysis data. The temperature dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to describe relaxation processes in glasses. At 300 K the interconversion time for A0 <--> A1 + A3 is 10 microseconds, and extrapolation yields approximately 1 ns for A1 <--> A3. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data support this conclusion: They show that formation of the A0 substate involves a major change of the protein structure; the distal histidine rotates about the C(alpha)-C(beta) bond, and its imidazole sidechain swings out of the heme pocket into the solvent, whereas it remains in the heme pocket in the A1 <--> A3 interconversion. The fast A1 <--> A3 exchange is inconsistent with structural models that involve differences in the protonation between A1 and A3.  相似文献   

2.
The two-phase extraction technique has been used to study the equilibrium between A23187, metal cations, and H+. Under these conditions the ionophore forms charge neutral isostoichiometric complexes with divalent cations in which both carboxylate groups of the 2:1 A23187:M2+ complexes are deprotonated. In ethanol, however, the methyl ester of A23187 also binds divalent cations indicating that protonated complexes between A23187 and cations should also exist. With monovalent cations, A23187 forms two charge-neutral complexes of stoichiometries and relative stabilities: A2HM greater than AM. Examination of energy utilization K+ and H+ movements, and light scattering capacity of mitochondria in the presence of divalent cation chelators, A23187, and valinomycin demonstrates that A23187 can act as a nigericin type K+ ionophore under appropriate conditions. Formation constants for the A2HM complexes with monovalent cations indicate that with appropriate conditions transport of Li+ and Na+ mediated by A23187 would also be expected. The binding constant data and associated free energies of complex formation are compared as a function of ionic radius and of cation charge. The data indicate that lack of conformational mobility in A23187 is responsible for the high cation size selectivity of this compound. To explain the transport selectivity of A23187 for divalent cations, it is proposed that this ionophore forms a family of five complexes, isostoichiometric between cations of different valence but of which only charge-neutral species are permeant to membranes. The charge of a given complex is in turn determined by that of the cation. The concept is consistent with the divalent cation transport specificity of A23187, explains the observed monovalent cation transport, and is useful in rationalizing the differences in charge selectivity between A23187 and X-537A.  相似文献   

3.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

4.
Genetic characterization of Artemia tibetiana (Crustacea: Anostraca)   总被引:1,自引:0,他引:1  
The brine shrimp Artemia consists of a number of bisexual species and a large number of parthenogenetic forms, which collectively, inhabit a wide range of hypersaline habitats. A recently described species (A. tibetiana) from a carbonate lake (Lagkor Co) in Tibet at an altitude of 4490 m has been tested with New World (A. franciscana USA, and A. franciscana feral population Vietnam) and Old World species (A. salina, A. urmiana, A. sinica) for cross fertility. These tests show complete infertility between A. tibetiana and A. franciscana . Between A. tibetiana and A. urmiana, A. sinica partial fertility through to F2 and F3 generations is evident. Allozyme and RAPD comparison of A. tibetiana with A. franciscana (USA), A. franciscana (Vietnam), A. sinica (Mongolia) and A. urmiana (Iran) show that A. tibetiana is similar to other bisexual species in mean heterozygosity (0.074) but has a somewhat higher proportion of polymorphic loci (40%, similar to that of A. urmiana ). The genetic distance between A. tibetiana and A. franciscana is 0.730, between A. tibetiana and A. urmiana is 0.475 and that between A. tibetiana and A. sinica is 0.114. FIS estimates for A. tibetiana differ significantly from zero for six loci, mainly because of lack of fit to Hardy-Weinberg expectations. This may suggest that even within the limited area of Lagkor Co there are Genétically distinct populations. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 333–344.  相似文献   

5.
《Gene》1998,216(1):1-11
A quarter of century following the prediction that mRNAs are translated in a circular form, recent biochemical and genetic evidence has accumulated to support the idea that communication between the termini of an mRNA is necessary to promote translation initiation. The poly(A)-binding protein (PABP) interacts with the cap-associated eukaryotic initiation factor (eIF) 4G (in yeast and plants) and eIF4B (in plants), a functional consequence of which is to increase the affinity of PABP for poly(A) and to increase the affinity of the cap-binding complex, eIF4F (of which eIF4G is a subunit) for the 5′ cap structure. In mammals, PABP interacts with a novel PABP-interacting protein that also binds eIF4A. The interaction between PABP and those initiation factors associated with the 5′ terminus of an mRNA may also explain the role of PABP during mRNA turnover, as it protects the 5′ cap from attack by Dcp1p, the decapping enzyme. Several of those mRNAs that have evolved functional equivalents to a cap or a poly(A) tail nevertheless require a functional interaction between terminal regulatory elements similar to that observed between the 5′ cap and poly(A) tail, suggesting that efficient translation is predicated on communication between largely-separated regulatory elements within an mRNA.  相似文献   

6.
7.
The native form of serpins (serine protease inhibitors) is a metastable conformation, which converts into a more stable form upon complex formation with a target protease. It has been suggested that movement of helix-F (hF) and the following loop connecting to strand 3 of beta-sheet A (thFs3A) is critical for such conformational change. Despite many speculations inferred from analysis of the serpin structure itself, direct experimental evidence for the mobilization of hF/thFs3A during the inhibition process is lacking. To probe the mechanistic role of hF and thFs3A during protease inhibition, a disulfide bond was engineered in alpha(1)-antitrypsin, which would lock the displacement of thFs3A from beta-sheet A. We measured the inhibitory activity of each disulfide-locked mutant and its heat stability against loop-sheet polymerization. Presence of a disulfide between thFs3A and s5A but not between thFs3A and s3A caused loss of the inhibitory activity, suggesting that displacement of hF/thFs3A from strand 5A but not from strand 3A is required during the inhibition process. While showing little influence on the inhibitory activity, the disulfide between thFs3A and s3A retarded loop-sheet polymerization significantly. This successful protein engineering of alpha(1)-antitrypsin is expected to be of value in clinical applications. Based on our current studies, we propose that the reactive-site loop of a serpin glides through between s5A and thFs3A for the full insertion into beta-sheet A while a substantial portion of the interactions between hF and s3A is kept intact.  相似文献   

8.
The T4 helicase loading protein (gp59) interacts with a multitude of DNA replication proteins. In an effort to determine the functional consequences of these protein-protein interactions, point mutations were introduced into the gp59 protein. Mutations were chosen based on the available crystal structure and focused on hydrophobic residues with a high degree of solvent accessibility. Characterization of the mutant proteins revealed a single mutation, Y122A, which is defective in polymerase binding and has weakened affinity for the helicase. The interaction between single-stranded DNA-binding protein and Y122A is unaffected, as is the affinity of Y122A for DNA substrates. When standard concentrations of helicase are employed, Y122A is unable to productively load the helicase onto forked DNA substrates. As a result of the loss of polymerase binding, Y122A cannot inhibit the polymerase during nucleotide idling or prevent it from removing the primer strand of a D-loop. However, Y122A is capable of inhibiting strand displacement synthesis by polymerase. The retention of strand displacement inhibition by Y122A, even in the absence of a gp59-polymerase interaction, indicates that there are two modes of polymerase inhibition by gp59. Inhibition of the polymerase activity only requires gp59 to bind to the replication fork, whereas inhibition of the exonuclease activity requires an interaction between the polymerase and gp59. The inability of Y122A to interact with both the polymerase and the helicase suggests a mechanism for polymerase unlocking by the helicase based on a direct competition between the helicase and polymerase for an overlapping binding site on gp59.  相似文献   

9.
Structures of met and azidomet hemerythrin at 1.66 A resolution   总被引:3,自引:0,他引:3  
The crystallographic refinement of met and azidomet hemerythrin has been carried out at 1.66 A resolution in an attempt to characterize precisely the binuclear iron center in this protein. Restrained least-squares refinement has produced molecular models giving R-values of 18.9% for met (65,683 reflections from 10 A to 1.66 A) and 17.6% for azidomet hemerythrin (68,747 reflections from 10.0 A to 1.66 A). The protein structure in each derivative is very similar to that of myohemerythrin. The mu-oxo bridged iron center differs between the two forms. The complex in met hemerythrin is asymmetric with the bridging oxygen closer to one of the iron atoms while the complex in azidomet hemerythrin is symmetric. After investigations of the effects of correlation in the refinement, we believe this difference between the two complexes is associated with chemical differences and is not a refinement artefact.  相似文献   

10.
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking.  相似文献   

11.

Background

Eukaryotic translation elongation factor eEF1A directs the correct aminoacyl-tRNA to ribosomal A-site. In addition, eEF1A is involved in carcinogenesis and apoptosis and can interact with large number of non-translational ligands. There are two isoforms of eEF1A, which are 98% similar. Despite the strong similarity, the isoforms differ in some properties. Importantly, the appearance of eEF1A2 in tissues in which the variant is not normally expressed can be coupled to cancer development. We reasoned that the background for the functional difference of eEF1A1 and eEF1A2 might lie in changes of dynamics of the isoforms.

Results

It has been determined by multiple MD simulation that eEF1A1 shows increased reciprocal flexibility of structural domains I and II and less average distance between the domains, while increased non-correlated diffusive atom motions within protein domains characterize eEF1A2. The divergence in the dynamic properties of eEF1A1 and eEF1A2 is caused by interactions of amino acid residues that differ between the two variants with neighboring residues and water environment. The main correlated motion of both protein isoforms is the change in proximity of domains I and II which can lead to disappearance of the gap between the domains and transition of the protein into a "closed" conformation. Such a transition is reversible and the protein can adopt an "open" conformation again. This finding is in line with our earlier experimental observation that the transition between "open" and "closed" conformations of eEF1A could be essential for binding of tRNA and/or other biological ligands. The putative calmodulin-binding region Asn311-Gly327 is less flexible in eEF1A1 implying its increased affinity for calmodulin. The ability of eEF1A1 rather than eEF1A2 to interact with Ca2+/calmodulin is shown experimentally in an ELISA-based test.

Conclusion

We have found that reversible transitions between "open" and "close" conformations of eEF1A provide a molecular background for the earlier observation that the eEF1A molecule is able to change the shape upon interaction with tRNA. The ability of eEF1A1 rather than eEF1A2 to interact with calmodulin is predicted by MD analysis and showed experimentally. The differential ability of the eEF1A isoforms to interact with signaling molecules discovered in this study could be associated with cancer-related properties of eEF1A2.  相似文献   

12.
13.
A method is introduced to compare results of a clustering technique at different levels of abstraction, or of different clustering techniques. The method emphasizes within cluster homogeneity as well as discontinuities between clusters. It has been derived from Hogeweg's method with some important changes. First each cluster is handled separately to determine the ratio between homogeneity and similarity to the nearest neighbour cluster. For a given clustering a weighted average value is computed over all clusters. This average value is standardized using an expected average value for a cluster configuration with the same number of clusters having the same sizes. A low level of the ratio between expected and observed values is supposed to indicate an optimal clustering. A derivation of the criterion is given and results from three sets of data with different properties are evaluated.  相似文献   

14.
GABARAP (GABA(A) receptor-associated protein) interacts with both microtubules and GABA(A) receptors in vitro and in vivo and is capable of modulating receptor channel kinetics. In this study, we use the intracellular loop of 15 GABA(A) receptor subunits to show that the interaction between GABARAP and GABA(A) receptor is specific for the gamma subunits. Pharmacological characterization of proteins purified by GABARAP affinity column indicates that native GABA(A) receptors interact with GABARAP. Quantitative yeast two-hybrid assays were used to identify the interaction domain in the gamma2 subunit for GABARAP binding, and to identify the interaction domain in GABARAP for GABA(A) receptor binding. A peptide corresponding to the GABARAP interaction domain in the gamma2 subunit was used to inhibit the interaction between GABARAP and the gamma2 subunit. In addition, the ability of GABARAP to promote cluster formation of recombinant receptors expressed in QT-6 fibroblasts was inhibited by a membrane-permeable form of this peptide in a time-dependent manner. The establishment of a model for GABARAP-induced clustering of GABA(A) receptors in living cells and the identification of subunit specificity and interaction domains in the interaction between GABARAP and GABA(A) receptors is a step in dissecting the function of GABARAP in GABA(A) receptor clustering and/or targeting.  相似文献   

15.
In an experiment, we combined force plate measurements and surface EMG in studying quiet and perturbed standing, involving MS (Multiple sclerosis) and controls. The aim of this paper is to report the results thus obtained on the relation between filtered gastrocnemius (GA) EMG and the anterior-posterior center-of-pressure (A/P COP) coordinate. The main finding is the good correspondence between A/P COP and the filtered GA EMG in the low frequency range. The EMG envelope was calculated using a zero-lag filter. Combining this with time shifts around 250-350 ms produced a high correlation (85.5+/-8.4%) between the GA-EMG envelope and the A/P COP. This EMG-COP relation was closest when using a low cut-off frequency value around 1 Hz in calculating the EMG envelope. Based on this filtering procedure we estimated the average EMG-COP time shift to be 283+/-43 ms between the GA-EMG envelope and A/P COP (which "lags" behind EMG envelope). This shift is consistent with the 1 Hz cut-off and phase shift produced by a corresponding critically damped second-order filter, and is about twice the corresponding twitch time. These results suggest that GA is to a large extent responsible for the phasic control of the anterior-posterior balance during quiet standing. A small difference (p<0.03) was found between mean time shift thus obtained for controls (n=4) and MS (n=6) while sway area showed a major difference (p<0.01). The paper also compares three alternative filters for numerical calculation of the EMG-envelope.  相似文献   

16.
A 7-generation kindred with the HLA-linked form of spinocerebellar ataxia (SCA1) was studied to determine whether the SCA1 gene maps centromeric or telomeric to the HLA loci. The DNA markers flanking the HLA-(A-B) region were used for polymorphism studies and multilocus linkage analysis. These two markers are the cDNA for the beta-subunit of HLA-DP, which is centromeric to HLA-(A-B), and the cDNA for coagulation factor XIIIa (F13A), which is telomeric to HLA-(A-B). Haplotypes were constructed using multiple polymorphisms for these two DNA markers, and pairwise linkage analysis revealed a maximum lod score of 2.18 for SCA1 versus HLA-DP at a recombination fraction of .05 and a maximum lod score of 0 for SCA1 versus F13A at a recombination fraction of .50. A possible crossover between HLA-(A-B) and HLA-DP was identified, but lack of samples from key individuals hampered the analysis. To clarify the phase and improve the analysis, the two chromosomes 6 for the crossover individual were separated in somatic cell hybrids. The results strongly favored the probability that the crossover occurred between HLA-(A-B-DR) and HLA-DP with SCA1 segregating with HLA-DP, consistent with a location centromeric to HLA-(A-B). Multilocus linkage analysis was used to evaluate further the location of SCA1 relative to F13A, HLA-(A-B), and HLA-DP; the results indicated that the SCA1 gene locus is centromeric to HLA-DP with odds of 46:1 favoring this most likely location over the second most likely location, i.e., telomeric to HLA-(A-B) between the HLA complex and F13A.  相似文献   

17.
The preparations of N alpha-Fmoc-3-nitro-L-tyrosine and N-Boc-anthranilic acid Dhbt ester and their application to parallel multiple column solid-phase peptide synthesis is described. A series of peptide substrates containing an anthraniloyl group at the amino terminus and a 3-nitrotyrosyl residue close to the carboxyl terminus have been synthesized. The fluorescence of the anthraniloyl group, intramolecularly quenched by the 3-nitrotyrosine, increases with cleavage of peptide bonds situated between the two groups. The quenching mechanism is of the long-range resonance energy transfer type and long peptide substrates were constructed and used for kinetic measurement on subtilisin Carlsberg and pepsin. Complete quenching was observed even with more than 20 A between the centers of the chromophores, and substrates with up to 50 A between the chromophores were synthesized. The importance of long substrates for optimal enzymatic activity was demonstrated.  相似文献   

18.
Anguilla anguilla glass eels arriving at two Mediterranean and two Atlantic sites were tested for differences in genetic composition between regions using a total of 23 microsatellite loci developed from an expressed sequence tag (EST) library. Hierarchical analysis of molecular variance indicated a non-significant difference between regions (Mediterranean v . Atlantic), which contrasted with the significant differences observed between samples within regions. The existence of a single spawning site for all A. anguilla individuals and extensive migration loop with great opportunity for mixing of individuals might explain the homogeneity in genetic composition found between regions. The observation of a (small-scale) pattern of genetic patchiness among intra-annual samples (arrival waves) within geographic regions does not conflict with the lack of (large-scale) geographic sub-structuring found between the Mediterranean and Atlantic regions, but most likely is a consequence of the strong dependence of A. anguilla on oceanic conditions in the Sargasso Sea that might result in a limited parental contribution to each spawning event. The comparison of Atlantic and Mediterranean A. anguilla glass eel recruits based on EST-linked microsatellite loci provides evidence supporting the hypothesis of panmixia A. anguilla across Europe.  相似文献   

19.
Cytochrome P-450cam in the native, substrate-free state (Fe3+, S = 1/2) substantially reduces the NMR relaxation times, T1 and T2, of water protons. Temperature and frequency dependences of T1 and T2 were measured; they are consistent with a model of one or two protons exchanging between a binding site on a heme ligand and bulk water. The relevant parameters of this model have been deduced from the data. The spin relaxation time of the heme iron, tau S similar to 0.5 ns at 25 degrees C, is unusually long for a low spin ferric heme protein but is compatible with the line widths measured for paramagnetically shifted heme resonances. The proton residence time on the ligand, tau M similar to 1 microsecond at 25 degrees C, follows an Arrhenius law with activation energy EM similar to 15 kcal/mol. A scalar hyperfine interaction A/h = 2.2 MHz (3.1 MHz for one-proton exchange) of the found proton(s) with the heme iron is deduced from the difference between T1 and T2 observed in the fast exchange limit. The iron-proton distance is found to be 2.9 A (2.6 A for one-proton exchange). Variation of pH between pH 6.4 and 8.6 does not affect T1. The bearing of these results on the question of the axial heme ligand is discussed.  相似文献   

20.
Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution   总被引:16,自引:0,他引:16  
The crystal structure of cytochrome c peroxidase (EC 1.11.1.5) has been refined to an R factor of 0.20 computed for all reflections to 1.7 A. The refined molecular model includes 263 bound water molecules and allows for x-ray scattering by amorphous solvent. The mean positional error in atomic coordinates is estimated to lie between 0.12 and 0.21 A. Two factors are identified which may account for the ability of the enzyme to stabilize high-oxidation states of the heme iron during catalysis: 1) the proximal histidine forms a hydrogen bond with a buried aspartic acid side chain, Asp-235; and 2) the heme environment is more polar than in the cytochromes c or globins, owing to the presence of the partially buried side-chain of Arg-48 and five water molecules bound in close proximity to the heme. Two of these occupy the presumed peroxide-binding site. Two candidates are likely for the side chain that is oxidized to a free radical during formation of Compound I: 1) Trp-51, which rests 3.3 A above the heme plane in close proximity (2.7 A) to the sixth coordination position; and 2) Met-172, which is 3.7 A from the heme. Nucleophilic stabilization of the methionyl cation radical may be possible via Asp-235. His-181 is found to lie coplanar with the heme in a niche between the two propionates near the suspected cytochrome c-binding site. A network of hydrogen bonds involving this histidine may provide a preferred pathway for electron transfer between hemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号