首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The occurrence of nitrogen isotope discrimination with absorption and assimilation of nitrate (NO3) and ammonium (NH4+) was investigated using two genotypes of barley, Hordeum vulgare L. cv. Steptoe and Az12 : Az70, the latter of which lacks the characterized nitrate reductase isozymes. Plants were grown under two situations: a closed system with limited nitrogen or an open system with unlimited nitrogen, to elucidate the conditions and processes that influence discrimination. There was no discrimination observed for Az12 : Az70 when supplied with limited nitrogen. Discrimination was observed for Steptoe seedlings at high external NO3 concentrations, but not with low NO3 when assimilation is probably rapid and complete. The same pattern was observed for Steptoe when NH4+ was supplied; indicating that for both nitrogen forms discrimination is dependent upon the presence of the assimilatory enzyme and the external concentration. The implications of this study are that both internal (assimilatory enzyme distribution) and external (source concentration) factors may have a larger impact on tissue δ 15N than the form of nitrogen utilized. This suggests that tissue δ 15N may not always be a reliable indicator of a plant's integrated nitrogen nutrition.  相似文献   

2.
Effects of pH on ammonium uptake by Typha latifolia L.   总被引:5,自引:0,他引:5  
The effects of solution pH on NH4+ uptake kinetics and net H+ extrusion by Typha latifolia L. were studied during short-term (days) and long-term (weeks) exposure to pH in the range of pH 3.5–8.0. The NH4+ uptake kinetics were estimated from depletion curves using a modified Michaelis-Menten model. T. latifolia was able to grow in solution culture with NH4+ as the sole N source and to withstand a low medium pH for short periods (days). With prolonged exposure (weeks) to pH 3.5, however, the plants showed severe symptoms of stress and stopped growing. The solution pH affected NH4+ uptake kinetics. The affinity for NH4+, as quantified by the half saturation constant (K1/2) and Cmin (the NH4+ concentration at which uptake ceases), decreased with pH. K1/2 was increased from 7.1 to 19.2 mmol m?3 and Cmin from 2.0 to 5.7 mmol m?3 by lowering the pH in steps from 8.0 to 3.5. Vmax was, however, largely unaffected by pH (~22 μmol h?1 g?1 root dry weight). Under prolonged exposure to constant pH, growth rates were highest at PH 5.0 and 6.5. At pH 8.0 growth was slightly depressed and at pH 3.5 growth completely stopped. NH4+ uptake kinetics were similar at pH 5.0, 6.5 and 8.0 whereas at pH 3.5 NH4+ uptake almost completely stopped. The ratio between net H+ extrusion and NH4+ uptake decreased significantly at low pH. The adverse effects of low pH on NH4+ uptake kinetics are probably a consequence of a reduced H+-ATPase activity and/or an increased re-entry of H+ at low pH, and the associated decrease in the electrochemical gradient across the plasma membranes of the root cells.  相似文献   

3.
A common method for measuring uptake by intact roots in situ is the depletion method, wherein intact fine roots are separated from soil and placed in nutrient solution. The difference between initial and final amounts of nutrient in solution is attributed to root uptake. Variations on this method include applying pretreatment solutions, training roots to grow into bags or trays, and varying concentrations of nutrient solution. We tested whether variations in methods affected measured net uptake rates of NH 4 + , NO 3 , and PO 4 3− . Intact roots of 60 year-old sugar maple (Acer saccharum Marsh.), red pine (Pinus resinosa Ait.), and Norway spruce (Picea abies (L.) Karst.) were given one of four treatments prior to measuring net uptake. “Trained” roots were grown in a sand-soil mixture. “Recovered” roots were excavated and allowed to recover in nutrient solution for two or four days (“two-day recovery” and “four-day recovery”, respectively). “No recovery” roots were excavated and used immediately in experiments. We exposed roots to three concentrations of nutrient solutions to observe the effects of initial nutrient solution concentration. Initial nutrient solution concentration was an important source of variation in measured uptake rates, and N uptake was stimulated by low antecedent concentrations. We found no significant differences in net uptake rates between pretreatments for any of the species studied, indicating that our pretreatments were not effective in improving measurement of uptake. Such pretreatments may not be necessary for measuring net uptake and may not hinder the comparison of rates measured using variations of the depletion method.  相似文献   

4.
NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures. Received: August 1, 1998 / Accepted: October 8, 1998  相似文献   

5.
6.
7.
    
Non-linear time courses of ammonium (NH4+) depletion from the medium and internal accumulation of soluble nitrogen (N) in macroalgae imply that the rate-limiting step for ammonium uptake changes over time. We tested this hypothesis by measuring the time course of N accumulation in N-limited Ulva rigida C. Agardh. Total uptake was measured as removal of NH4+ from medium. Rates for the component processes (transport of NH4+ across the membrane = Rv assimilation of tissure NH4+ into soluble N compounds = Ra, assimilation of tissue NH4+ into soluble N compounds = Ra and incorporation of soluble N compounds into macromolecules = R1) were determined by measuring the rate of labelling of the major tissue N pools after the addition of 15N-ammonium. The results indicate that nitrogen-specific rates (mass N taken up / mass N present / unit time) are ranked in the order of Rt < Ra < R1 Absolute uptake rates (μmol N. mg dry wt?1. h?1) showed a different relationship. Membrane transport appears to be inhibited when NH4+ accumulates in the tissue. Maximum uptake rates occur when assimilation of NH4+ into soluble N compounds begins. Assimilation of NH4+ into soluble N compounds was initially faster than incorporation of soluble N compounds into macromolecules. Implications of rate limitations caused by differences in maximal rates and maximal pool sizes are discussed.  相似文献   

8.
以竹叶眼子菜(Potamogeton malaianus)无菌系种苗为试验材料,研究了不同水体营养浓度水平(低营养:TN0.213 mg·L-1,TP 0.0093 mg·L-1;中营养:TN 0.71 mg·L-1,TP 0.031 mg·L-1;高营养:TN 7.1 mg·L-1,TP0.31 mg·L-1)对其生长与NH4+-N的吸收动力学参数的影响。结果表明,不同浓度水体营养对竹叶眼子菜生长的影响较小,而NH4+-N的吸收动力学参数有显著差异。竹叶眼子菜在高、中和低营养培养条件下的NH4+-N最大吸收速率Vmax分别为41.1、29.1、21.1μmol·g-1·h-1,米氏常数Km分别为0.356、0.306、0.122 mmol·L-1。竹叶眼子菜营养吸收动力学与其生长环境关系紧密,在低浓度生长环境中时,竹叶眼子菜可以通过降低Km值来提高对营养离子的亲和力以满足营养需求;在高浓度生长环境中,该植物通过增大吸收潜力来适应高营养。  相似文献   

9.
稻鸭共作生态系统稻田土壤固定态铵含量及有效性   总被引:8,自引:0,他引:8       下载免费PDF全文
李成芳  曹凑贵  潘圣刚  黄丰  代光照  汪金平  展茗  龚伟玲 《生态学报》2008,28(6):2729-2729~2737
通过田间试验研究了稻鸭共作生态系统土壤固定态铵的动态及有效性和温度、土壤pH、土壤交换性铵及土壤质地对土壤固定态铵的影响.研究结果表明:(1)在水稻生育期间,土壤固定态铵含量处于不断变化之中,施肥促进土壤对铵的固定,水稻的吸收促进土壤固定态铵的释放;其中在固定态铵释放过程之中,新固定的肥料铵几乎完全释放,而原有固定态铵没有释放.(2)较之常规稻作,稻鸭共作显著地提高了土壤固定态铵含量,其平均含量高出常规稻作的7%.(3)土壤交换性NH 4含量和pH与土壤固定态铵含量呈显著正相关(p<0.01);土壤温度(5cm土层)与土壤固定态铵含量间不相关;土壤固定态铵含量与>0.2mm的砂粒含量和<0.002mm的粘粒含量呈显著或极显著相关,而与0.02~0.2mm和0.002~0.02mm粘粒含量不相关.  相似文献   

10.
    
Improvement in fertilizer use efficiency is a key aspect for achieving sustainable agriculture in order to minimize costs, greenhouse gas emissions, and pollution from nutrient run‐off. To optimize root architecture for nutrient uptake and efficiency, we need to understand what the roots encounter in their environment. Traditional methods of nutrient sampling, such as salt extractions can only be done at the end of an experiment, are impractical for sampling locations precisely and give total nutrient values that can overestimate the nutrients available to the roots. In contrast, microdialysis provides a non‐invasive, continuous method for sampling available nutrients in the soil. Here, for the first time, we have used microCT imaging to position microdialysis probes at known distances from the roots and then measured the available nitrate and ammonium. We found that nitrate accumulated close to roots whereas ammonium was depleted demonstrating that this combination of complementary techniques provides a unique ability to measure root‐available nutrients non‐destructively and in almost real time.  相似文献   

11.
稻鸭共作对稻田氮素变化及土壤微生物的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
李成芳  曹凑贵  展茗  汪金平 《生态学报》2008,28(5):2115-2115~2122
通过田间试验研究稻鸭共作生态系统中土壤与田面水全N、无机N的动态变化及水稻吸N的规律和土壤微生物数量的变化规律.结果表明,(1)与常规稻作相比,稻鸭共作稻田土壤、田面水全N含量略有提高,土壤、田面水NH 4含量和水稻含N量显著提高,而土壤、田面水NO-3含量无明显变化;(2)稻鸭共作极显著提高了水稻总吸N量,高于常规稻作17.8%;相关分析显示,水稻吸N量与NH 4含量呈一元二次方程式关系,达到显著或极显著相关.(3)与常规稻作相比,稻鸭共作能显著提高土壤微生物数量,其中细菌数最多,放线菌次之,真菌最少.  相似文献   

12.
13.
Rates of NH4+ and NO3? uptake were determined by accumulation of 15N in plant tissue and by disappearance of nutrient from the medium. Agreement between rates calculated by the two methods was good, averaging 82.7% (SD = 15.8%) and 91.2% (SD = 13.7%) for NH4+ and NO3? uptake, respectively. An average of 93.4 and 96.0% of added 15NH4+ and 15NO3? was recovered from the medium and /or plant tissue at the end of the incubations. Both bacterial uptake and regeneration of NH4+ may contribute to discrepancies between NH4+ uptake rates calculated by 15N accumulation and disappearance of NH4+ from the medium. The influence of tissue composition on uptake of NH4+, NO3? and PO43- by Enteromorpha prolifera (Müller) J. Agardh was examined. For NH4+ uptake, Vmax was 188 μmol NH4+. g dry wt?1. h?1 and Ks ranged from 9.3 to 13.4 μM, but there was no correlation between kinetic parameters and tissue nitrogen content. For NO3?, both kinetic parameters were higher for plants with low tissue nitrogen than for plants with high tissue nitrogen. Maximum rates were 169 and 75.4 μmol NO3?. g dry wt?1. h?1, and Ks was 13.3 and 2.31 μM for low and high tissue nitrogen plants, respectively. Estimates of uptake in the field suggested that NH4+ accounted for 65% and NO3? for up to 35% of total nitrogen uptake during the summer. Nutrient uptake rates of field-collected plants also indicated that E. prolifera in Yaquina Bay, Oregon was not likely to have been nitrogen-limited, but may have been phosphorus-limited.  相似文献   

14.
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+.  相似文献   

15.
Studies of uptake of ionic sources of N by two hydroponically grown rice (Oryza sativa L.) cultivars (paddy‐field‐adapted Koshihikari and dryland‐adapted Kanto 168) showed that the magnitude of the nitrogen isotope fractionation (?) for uptake of NH4+ depended on the concentrations of NH4+ and cultivar (averaging –6·1‰ for Koshihikari and –12·0‰ for Kanto 168 at concentrations from 40 to 200 mmol m?3 and, respectively, –13·4 and –28·9‰ for the two cultivars at concentrations from 0·5 to 4 mol m?3). In contrast, the ? for uptake of NO3? in similar experiments was almost insensitive to the N concentration, falling within a much narrower range (+3·2‰ to –0·9‰ for Koshihikari and –0·9‰ to –5·1‰ for Kanto 168 over NO3? concentrations from 0·04 to 2 mol m?3). From longer term experiments in which Norin 8 and its nitrate‐reductase deficient mutant M819 were grown with 2 or 8 mol m?3 NO3? for 30 d, it was concluded that the small concentration‐independent isotopic fractionation during absorption of this ion was not related to nitrate reductase activity.  相似文献   

16.
Bacterial ammonium transport   总被引:10,自引:0,他引:10  
  相似文献   

17.
Influx isotherms were obtained for nitrate and ammonium from three legumes, Cajanus cajan (L.) Millsp., Cicer arietinum L. and Arachis hypogaea L. and three cereals, Sorghum bicolor (L.) Moench., Pennisetum glaucum L. and Zea mays L. The transition in influx isotherms for both nitrogen sources was found to be within the concentration range (0.05–2.5 mM) tested. There were significant differences in Km and Vmax for ammonium between legumes and cereals. The difference in the kinetic properties for nitrate uptake between the two groups of plants only became apparent at the higher concentration tested. Legumes translocated absorbed nitrate and ammonium to shoots more rapidly than cereals. Results show that there are significant differences in uptake and translocation of ammonium and nitrate between legumes and cereals.  相似文献   

18.
  总被引:2,自引:0,他引:2  
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the \"side-to-side\" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution.  相似文献   

19.
Similar NH4+ and NO3?.uptake kinetic patterns were observed in Neoagardhiella baileyi (Harvey ex Kiitzing) Wyinne & Taylor and Gracilaria foliifera (Forssk?l) Borgesen. NO3? was taken up in a rate-sturating fashion described by the Michaelis-Menten equation. NH4+ uptake was multicomponent: a saturable component was accompanied by a diffusive or a high K component showing no evidence of saturation (at ≤50 μM [NH4+]). Nitrogen starved plantsi(C/N atom ratios > ca. 10) showed higher transient rates of NH4+ uptake at a given concentration than plants not N-Iimited. Only plants with high N content exhibited diel changes inNH4+ uptake rates, and showed transient rates of NH4+ accumulation which did not greatly exceed the capacity to incorporate N in steady-state growth. NH4+ was preferred over NO3?even in plants preconditioned on NO3?as the sole N. source, NO3? uptake was suppressed at 5μM [NH4+], but simultaneous uptake occurred at unsurpressed rates at lower concentrations. Potential for N accumulation was greater via NH4+uptake than via NO3?uptake. Changing capacity for NH4+ uptake with N content appears to be a mechanism whereby excessive accumulation of N was avoided by N-.satiated plants but a large accumulation was possible for N-depleted plants.  相似文献   

20.
    
NH4+ and NO3? uptake were measured by continuous sampling with an autoanalyzer. For Hypnea musciformis (Wulfen) Lamouroux, NO3?up take followed saturable kinetics (K2=4.9 μg-at N t?1, Vmax= 2.85 μg- at N, g(wet)?1. h?1. The ammonium uptake data fit a trucatd hyperbola, i.e., saturation was not reach at the concentrations used. NO3? uptake was reduced one-half in the presence of NH4+, but presence of NO3? had no effect on NH4+ uptake. Darkness reduced both NO3? and NH4+ uptake by one-third to one-half. For Macrocystis pyrufera (L) C. Agardh, NO3? uptake followed saturable kinetices: K2=13.1 μg-at N. l?1. Vmax=3.05 μg-at N. g(wet)?1. h?1.NH4+ uptake showed saturable kinetics at concentration below 22 μg-at N l -1 (K2=5.3 μg-at N.1–1, Vmax= 2.38 μg-at N G (wet)?1.h?1: at higher concentration uptake increased lincarly with concentrations. NO3?and NH4+ were taken up simulataneously: presence of one form did not affect uptake of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号