首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

3.
The contribution of nyoglobin to the oxygen uptake of red skeletal muscle was estimated from the difference in oxygen uptake with and without functional myoglobin. The oxygen uptake of bundles (25 mm long, 0.5 mm mean diameter) of muscle fibers teased from pigeon breast muscle was measured in families of steady states of oxygen pressure from 0 to 250 mm Hg. The oxygen-binding function of myoglobin, in situ in muscle fiber bundles, was abolished by treatment with nitrite of hydroxylamine, which convert oxymyoglobin in situ to high spin ferric myoglobin, or with phenylhydrazine, which converts oxymyoglobin to denatured products, or with 2-hydroxyethylhydrazine, which appears to remove myoglobin from the muslce. The oxygen uptake was again measured. At higher oxygen pressure, where oxygen availability does not limit the respiration of the fiber bundles, oxygen uptake is not affected by any of the four reagents, which is evidence that mitochondrial oxygen uptake is not impaired. At lower oxygen pressure, where oxygen uptake is one-half maximal, the steady state oxygen consumption is roughly halved by abolishing functional myoglobin. Under the steady state conditions studied, the storage function of myoglobin, being static, vanishes and the transport function stands revealed. We conclude from these experiments that myoglobin may transport a significant fraction of the oxygen consumed by muscle mitochondria.  相似文献   

4.
After grafting, many structural and functional characteristics of skeletal muscle change with time until reaching a stable value. For several characteristics, these stable values are less than those observed in control skeletal muscle. Characteristics such as mass and fiber cross-sectional area are influenced by chronic changes in physical activity. The extent of our understanding of the dimensions and mechanisms of activity-induced adaptations of grafts is limited and based solely on experiments with rats. Improvements in mass, protein content, oxidative capacity, and glycogen concentration have been documented with conditioning by running of sufficient intensity and duration. The growth and development of soleus muscle grafts are severely impaired when normal weight-bearing activity is removed. The mass and maximum tension development of grafts are increased with ablation of muscles that function synergistically to the grafts, but are diminished after chronic electrical stimulation. Chronic electrical stimulation does increase oxidative capacity, capillarity, and the resistance to fatigue. Much remains to be learned about the mechanisms by which activity-related adaptations occur in skeletal muscle grafts.  相似文献   

5.
Morphological changes appearing in the course of muscle regeneration after reinnervation of denervated M. soleus (slow) and M. tibialis anterior (fast) rat skeletal muscle were investigated. It was found that pathological changes typical for denervation atrophy (seen on the 10th day after crushing the sciatic nerve) and symptoms of regeneration (beginning about the 15th day) were much more pronounced in the soleus than in the tibialis muscle. Some stages of regeneration in the soleus muscle could be distinguished. The contractile material destructions were the first pathological changes that disappeared after the beginning of regeneration. In the second stage other denervation changes disappeared and intensive regeneration of muscle fibres was observed. In the next stage regeneration slowed down, and the reduction of the excess of muscle nuclei was visible. Four months after crushing the nerve, regeneration proceeded to completion with only some traces of the passed processes: in the soleus muscle, chains of sarcolemmal nuclei, satellite cells and newly formed muscle fibres were more often seen than in contralateral muscle; in the tibialis, collagen depots were present around the vessels and between muscle fascicles.  相似文献   

6.
7.
The regulation of the energy metabolism in contracting skeletal muscle is under close control, and several regulating factors have been reported. The aim of this study was to investigate the importance of the oxygen supply as a limiting factor for muscle performance during contractions and recovery from contractions. To perform well-controlled standardized experiments on contracting skeletal muscle, the perfused rat hind limb model was developed. The 31P NMR technique was adapted to the rat hind limb model. This enabled continuous nondestructive monitoring of the energy state at various levels of muscular activity. Significant correlations were found between oxygen delivery and oxygen consumption, lactate release, and glucose uptake, respectively. An increased degree of fatigue was observed at lower oxygen deliveries. In both soleus and gastrocnemius muscles, oxygen delivery correlated with the intramuscular concentrations of phosphocreatine (PCr), lactate, and glycogen. The 31P NMR experiments showed a correlation between oxygen delivery and the steady-state level of PCr/inorganic phosphate (Pi) during the contraction period. The rate of recovery in PCr/Pi after the contraction was also dependent on oxygen delivery. The results demonstrate a causal relationship between oxygen supply and energy state in contracting as well as recovering skeletal muscles.  相似文献   

8.
Human skeletal muscle fibers seem to share most of the same interrelationships among myosin ATPase activity, myosin heavy chain (MHC) phenotype, mitochondrial enzyme activities, glycolytic enzyme activities and cross-sectional area (CSA) as found in rat, cat and other species. One difference seems to be that fast fibers with high mitochondrial content occur less frequently in humans than in the rat or cat. Recently we have reported that the type of MHC expressed and the size of the muscle fibers in humans that have spent 11 days in space change significantly. Specifically, about 8% more fibers express fast MHCs and all phenotypes atrophy in the vastus lateralis (VL) post compared to preflight. In the present paper we examine the relationships among the population of myonuclei, MHC type and CSA of single human muscle fibers before and after spaceflight. These are the first data that define the relationship among the types of MHC expressed, myonuclei number and myonuclei domain of single fibers in human muscle. We then compare these data to similar measures in the cat. In addition, the maximal torque that can be generated by the knee extensors and their fatigability before and after spaceflight are examined. These data provide some indication of the potential physiological consequences of the muscle adaptations that occur in humans in response to spaceflight.  相似文献   

9.
10.
Hindlimb unweighting (HLU) has been shown to alter myogenic tone distinctly in arterioles isolated from skeletal muscles composed predominantly of fast-twitch (white gastrocnemius) compared with slow-twitch (soleus) fibers. Based on these findings, we hypothesized that HLU would alter myogenic tone differently in arterioles isolated from distinct fiber-type regions within a single skeletal muscle. We further hypothesized that alterations in myogenic tone would be associated with alterations in voltage-gated Ca(2+) channel current (VGCC) density of arteriolar smooth muscle. After 14 days of HLU or weight bearing (control), first-order arterioles were isolated from both fast-twitch and mixed fiber-type regions of the gastrocnemius muscle, cannulated, and pressurized at 90 cmH(2)O. Mixed gastrocnemius arterioles of HLU rats demonstrated increased spontaneous tone [43 +/- 5% (HLU) vs. 27 +/- 4% (control) of possible constriction] and an approximately twofold enhanced myogenic response when exposed to step changes in intraluminal pressure (10-130 cmH(2)O) compared with control rats. In contrast, fast-twitch gastrocnemius arterioles of HLU rats demonstrated similar levels of spontaneous tone [6 +/- 2% (HLU) vs. 6 +/- 2% (control)] and myogenic reactivity to control rats. Neither KCl-induced contractile responses (10-50 mM KCl) nor VGCC density was significantly different between mixed gastrocnemius arterioles of HLU and control rats. These results suggest that HLU produces diverse adaptations in myogenic reactivity of arterioles isolated from different fiber-type regions of a single skeletal muscle. Furthermore, alterations in myogenic responses were not attributable to altered VGCC density.  相似文献   

11.
12.
Changes in connectin and elasticity of skeletal muscle were determined during post-mortem ageing. The amount of connectin decreased with increasing time of post-mortem storage whereas the rate of the decrease depended on the source of muscles. The loss in elasticity of muscle coincided well with the decrease in connectin contents. Electron microscopically, a network structure between the Z discs vanished when the amount of connectin fell to zero. We have concluded that the continuous net structure of connectin is responsible for about 30% of the total elasticity of living skeletal muscle and its degradtaion is responsible for post-mortem tenderization of meat.  相似文献   

13.
14.
Capillarity and fiber composition were studied by the ATPase technique in frozen samples of sternothyroid muscle of dogs from sea level (SL) and high altitude (3,300–4,300 m) (HA). Capillary density (CD), capillary to fiber ratio (C:F) and fiber cross sectional area (FCSA) were measured. The mean CD was 791/mm2 at SL and 743/mm2 at HA. CD was linearly related to FCSA in the SL animals (CD=1112.8–0.10 FCSA; r=–0.63). In both SL and HA animals, C:F was linearly and positively correlated with FCSA. There was no significant difference between the two regression lines; therefore, only one line represents all the data (C:F=0.78+(5.19×10–4) FCSA; r=0.77). Thus, at a given FCSA the C:F was the same for SL and HA dogs. Two types of fibers were identified: type I (slow twitch) (42%) and type II (fast twitch) (58%). No differences in fiber composition or FCSA were observed between the SL and HA dogs. These results indicate that moderate levels of hypoxia do not affect the capillarity of dog skeletal muscle.  相似文献   

15.
16.
To attempt to explain the difference in intrinsic (untrained) endurance running capacity in rats selectively bred over seven generations for either low (LCR) or high running capacity (HCR), the relationship among skeletal muscle capillarity, fiber composition, enzyme activity, and O(2) transport was studied. Ten females from each group [body wt: 228 g (HCR), 247 g (LCR); P = 0.03] were studied at 25 wk of age. Peak normoxic maximum O(2) consumption and muscle O(2) conductance were previously reported to be 12 and 33% higher, respectively, in HCR, despite similar ventilation, arterial O(2) saturation, and a cardiac output that was <10% greater in HCR compared with LCR. Total capillary and fiber number in the medial gastrocnemius were similar in HCR and LCR, but, because fiber area was 37% lower in HCR, the number of capillaries per unit area (or mass) of muscle was higher in HCR by 32% (P < 0.001). A positive correlation (r = 0.92) was seen between capillary density and muscle O(2) conductance. Skeletal muscle enzymes citrate synthase and beta-hydroxyacyl-CoA dehydrogenase were both approximately 40% higher (P < 0.001) in HCR (12.4 +/- 0.7 vs. 8.7 +/- 0.4 and 3.4 +/- 0.2 vs. 2.4 +/- 0.2 mmol. kg(-1). min(-1), respectively), whereas phosphofructokinase was significantly (P = 0.02) lower in HCR (27.8 +/- 1.2 vs. 35.2 +/- 2.5 mmol. kg(-1). min(-1)) and hexokinase was the same (0.65 +/- 0.04 vs. 0.65 +/- 0.03 mmol. kg(-1). min(-1)). Resting muscle ATP, phosphocreatine, and glycogen contents were not different between groups. Taken together, these data suggest that, in rats selectively bred for high-endurance exercise capacity, most of the adaptations for improved O(2) utilization occur peripherally in the skeletal muscles and not in differences at the level of the heart or lung.  相似文献   

17.
In both replantation and transplantation, circulation is restored to ischemic muscle by vascular anastomoses. As a result, the length of time that skeletal muscle will endure ischemia is important to know clinically. Using microsurgical techniques, we shut off the blood supply to the quadriceps femoris muscle in adult Wistar rats--by occluding the artery, the vein, or both for varying time intervals. The muscle was maintained in the animal for 48 hours, and then examined histologically. Our results indicate that the period of warm ischemia should be limited to about one hour, because a longer period of arterial ischemia produces severe histological changes in muscle. The limiting factor seems to be the arterial, rather than the venous supply. The possibility of muscle regeneration after such ischemic insults was not investigated.  相似文献   

18.
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.  相似文献   

19.
20.
低氧习服大鼠骨骼肌毛细血管密度和血流供应的变化特点   总被引:4,自引:0,他引:4  
目的:观察大鼠在低氧习服过程中,骨骼肌毛细血管密度和血流供应的变化规律。方法:大鼠在模拟海拔5000m低氧5、15和30d后,用肌球蛋白ATP酶(mATPase)组织化学方法显示骨骼肌Ⅰ、Ⅱ型纤维和毛细血管并进行图像分析;用放射性微球法测定骨骼肌血流量。结果:低氧5d组大鼠骨骼肌纤维即出现明显萎缩,15d和30d组大鼠毛细血管密度显著增高,但单位面积内毛细血管数/肌纤维数(C/F)的比值无明显变化。在所观测的时间内,各组大鼠骨骼肌血流量未见明显变化。结论:大鼠在低氧习服过程中,毛细血管并未发生真正的增生,而由于骨骼肌纤维出现萎缩,使毛细敌国管数目相对增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号