首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used sequence and structural comparisons to determine the fold for eukaryotic ornithine decarboxylase, which we found is related to alanine racemase. These enzymes have no detectable sequence identity with any protein of known structure, including three pyridoxal phosphate-utilizing enzymes. Our studies suggest that the N-terminal domain of ornithine decarboxylase folds into a beta/alpha-barrel. Through the analysis of known barrel structures we developed a topographic model of the pyridoxal phosphate-binding domain of ornithine decarboxylase, which predicts that the Schiff base lysine and a conserved glycine-rich sequence both map to the C-termini of the beta-strands. Other residues in this domain that are likely to have essential roles in catalysis, substrate, and cofactor binding were also identified, suggesting that this model will be a suitable guide to mutagenic analysis of the enzyme mechanism.  相似文献   

2.
A spectrophotometric method for assaying the activity of three amino acid decarboxylases is reported. This method makes use of the coupled reaction of the decarboxylase with phosphoenolpyruvate carboxylase and malate dehydrogenase. The assay is simple and rapid and allows continuous monitoring of the reaction progress. The kinetic parameters obtained using this method for diaminopimelate decarboxylase, lysine decarboxylase, and arginine decarboxylase are comparable to values obtained by radiochemical methods.  相似文献   

3.
Many gene flow barriers associated with genetic isolation during eukaryotic species divergence, are lacking in prokaryotes. In these organisms the processes associated with horizontal gene transfer (HGT) may provide both the homogenizing force needed for genetic cohesion and the genetic variation essential to speciation. This is because HGT events can broadly be grouped into genetic conversions (where endogenous genetic material are replaced with homologs acquired from external sources) and genetic introductions (where novel genetic material is acquired from external sources). HGT-based genetic conversions therefore causes homogenization, while genetic introductions drive divergence of populations upon fixation of genetic variants. The impact of HGT in different prokaryotic species may vary substantially and can range from very low levels to rampant HGT, producing chimeric groups of isolates. Combined with other evolutionary processes, these varying levels of HGT causes diversity space to be occupied by unique groups that are mostly incomparable in terms of genetic similarity, genomic cohesion and evolutionary age. As a result, the conventional, cut-off based metrics for species delineation are not adequate. Rather, a pluralistic approach to prokaryotic species recognition is required to accommodate the unique evolutionary ages and tendencies, population dynamics, and evolutionary fates of individual prokaryotic species. Following this approach, all prokaryotic species may be regarded as unique and each of their own kind (sui generis). Taxonomic decisions thus require evolutionary information that integrates vertical inheritances with all possible sources of genetic heterogeneity to ultimately produce robust and biologically meaningful classifications.  相似文献   

4.
Enzymatic asymmetric synthesis by decarboxylases   总被引:2,自引:0,他引:2  
Decarboxylation reactions using microbial cells or enzymes are increasingly being used for the synthesis of enantiomerically pure compounds because of their high degree of regio- and stereo-specificity. Pyruvate decarboxylase, benzoylformate decarboxylase and phenylpyruvate decarboxylase enzymes are capable of acyloin-type condensation reactions leading to formation of chiral alpha-hydroxy ketones, which are versatile building blocks in the pharmaceutical and chemical industries. Availability of three-dimensional structures of some decarboxylases in recent years has facilitated understanding of reaction mechanisms and the creation of mutants with enhanced activity and stability.  相似文献   

5.
《Journal of molecular biology》2019,431(24):4868-4881
Staphyloferrin B is a hydroxycarboxylate siderophore that is crucial for the invasion and virulence of Staphylococcus aureus in mammalian hosts where free iron ions are scarce. The assembly of staphyloferrin B involves four enzymatic steps, in which SbnH, a pyridoxal 5′-phosphate (PLP)-dependent decarboxylase, catalyzes the second step. Here, we report the X-ray crystal structures of S. aureus SbnH (SaSbnH) in complex with PLP, citrate, and the decarboxylation product citryl-diaminoethane (citryl-Dae). The overall structure of SaSbnH resembles those of the previously reported PLP-dependent amino acid decarboxylases, but the active site of SaSbnH showed unique structural features. Structural and mutagenesis analysis revealed that the citryl moiety of the substrate citryl-l-2,3-diaminopropionic acid (citryl-l-Dap) inserts into a narrow groove at the dimer interface of SaSbnH and forms hydrogen bonding interactions with both subunits. In the active site, a conserved lysine residue forms an aldimine linkage with the cofactor PLP, and a phenylalanine residue is essential for accommodating the l-configuration Dap of the substrate. Interestingly, the freestanding citrate molecule was found to bind to SaSbnH in a conformation inverse to that of the citryl group of citryl-Dae and efficiently inhibit SaSbnH. As an intermediate in the tricarboxylic acid (TCA) cycle, citrate is highly abundant in bacterial cells until iron depletion; thus, its inhibition of SaSbnH may serve as an iron-dependent regulatory mechanism in staphyloferrin B biosynthesis.  相似文献   

6.
Abstract Antigenic, and hence possible evolutionary, relationships amongst various TPP-dependent non-oxidative α-keto acid decarboxylases were determined by the Ouchterlony double diffusion method and by measuring the degree of antibody-induced enzyme inhibition. The results show that: (a) phenylglyoxylate decarboxylases of various wild-type strains of Acinetobacter calcoaceticus are antigenically indistinguishable; (b) there seems to be no antigenic cross-reactivity between the phenylglyoxylate decarboxylase of A. calcoaceticus and of Pseudomonas aeruginosa or Pseudomonas putida ; and (c) no antigenic homology can be detected amongst phenylglyoxylate decarboxylase and phenylpyruvate decarboxylase of A. calcoaceticus and pyruvate decarboxylase of brewers' yeast.  相似文献   

7.
Amino acid decarboxylases catalyze decarboxylation of amino acids into amines that possess wide industrial applications. As key enzymes in biobased production of industrially important amines such as cadaverine, putrescine and β-alanine, lysine decarboxylase, ornithine decarboxylase and aspartic acid decarboxylase have attracted increasing attention. To develop enzyme variants with superior catalytic properties, there is a great need for high-throughput assay of these decarboxylases. Here we report the development of assays based on the color change of pH indicator – chlorophenol red (CPR) or bromothymol blue (BTB) – in decarboxylation reactions, in which one proton was consumed per carboxylic group decarboxylated resulting in an increase in pH. First, two buffer-indicator pairs, 4-morpholineethanesulfonic acid (MES)-CPR and 3-morpholinopropanesulfonic acid (MOPS)-BTB, were chosen on the basis of their similar pKa values at approximately pH 6.0 and 7.0, both of which are physiologically relevant. Next, the effects of buffer strength and indicator concentration on absorbance changes were examined in assay mixtures with NaOH titration, which mimicked proton consumption in decarboxylation reactions. Finally, high-throughput quantification of lysine decarboxylase, ornithine decarboxylase and aspartic acid decarboxylase was achieved using a microplate format. These results suggest that our indicator assay system may have potential applications for screening diverse decarboxylases.  相似文献   

8.
Changes in the activity of lysine decarboxylase (LDC), tyrosine decarboxylase (TyDC), and ornithine decarboxylase (ODC) within orchid (Phalaenopsis × hybridum ‘Innocence’) leaves, infested by two mealybug species: Pseudococcus longispinus (Targ. Tozz.) and Pseudococcus maritimus (Ehrh.) were quantified. The pattern of changes was dependent on the insect species and duration of infestation. P. longispinus feeding increased LDC and TyDC activity after one week during the total period of observations. This species inhibited ODC activity after one week but increased later. P. maritimus decreased LDC activity in orchid leaves at all studied terms. TyDC action also went up during the first week of the infestation and was reduced after two weeks, while ODC was decreased after one day and induced later. The mechanism for the participation of analysed amino acid decarboxylases in local and/or systemic steps of orchid responses to mealybug infestation is discussed.  相似文献   

9.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

10.
The concentration of cyclic AMP and cyclic GMP were measured in the denervated rat diaphragm at various times following unilateral phrenicectomy. Cyclic AMP concentration was raised by the second day after operation, reached a peak by the third day, followed by another increase at around 10 days. By contrast, cyclic GMP concentration was decreased within a day after denervation and remained below control levels at all subsequent times studied. Epinephrine in vitro produced a comparable increase in the concentration of cyclic AMP in both normal and denervated tissue. The concentration of adenosine appeared unchanged in the denervated diaphragm by comparison with its innervated contorl. Activity of ornithine decarboxylase was elevated in the diaphragms of rats treated with dibutyryl cyclic AMP, but this effect could also be achieved with sodium butyrate alone. Adenosylmethionine decarboxylase activity was unaffected after treatment with either compound. These observations and others discussed are taken to indicate a lack of direct relationship between cyclic AMP concentrations and the activity of the rate-limiting enzymes of polyamine biosynthesis in the rat diaphragm.  相似文献   

11.
Genetic manipulation of lipid biosynthetic enzymes allows modification of cellular membranes. We made use of this strategy and constructed mutants in phospholipid metabolism of Pichia pastoris , which is widely used in biotechnology for expression of heterologous proteins. Here we describe identification of two P. pastoris phosphatidylserine decarboxylases (PSDs) encoded by genes homologous to PSD1 and PSD2 from Saccharomyces cerevisiae . Using P. pastoris psd1 Δ and psd2 Δ mutants we investigated the contribution of the respective gene products to phosphatidylethanolamine synthesis, membrane composition and cell growth. Deletion of PSD1 caused loss of PSD activity in mitochondria, a severe growth defect on minimal media and depletion of cellular and mitochondrial phosphatidylethanolamine levels. This defect could not be compensated by Psd2p, but by supplementation with ethanolamine, which is the substrate for the cytidine diphosphate (CDP)–ethanolamine pathway, the third route of phosphatidylethanolamine synthesis in yeast. Fatty acid analysis showed selectivity of both Psd1p and Psd2p in vivo for the synthesis of unsaturated phosphatidylethanolamine species. Phosphatidylethanolamine species containing palmitic acid (16:0), however, were preferentially assembled into mitochondria. In summary, this study provides first insight into membrane manipulation of P. pastoris , which may serve as a useful method to modify cell biological properties of this microorganism for biotechnological purposes.  相似文献   

12.
Pyruvate decarboxylase (PDC) is a key enzyme in homoethanol fermentation process, which decarboxylates 2-keto acid pyruvate into acetaldehyde and carbon dioxide. PDC enzymes from potential ethanol-producing bacteria such as Zymomonas mobilis, Zymobacter palmae and Sarcina ventriculi have different K(m) and k(cat) values for the substrate pyruvate at their respective optimum pH. In this study, the putative three-dimensional structures of PDC dimer of Z. palmae PDC and S. ventriculi PDC were generated based on the X-ray crystal structures of Z. mobilis PDC, Saccharomyces cerevisiae PDC form-A and Enterobacter cloacae indolepyruvate decarboxylase in order to compare the quaternary structures of these bacterial PDCs with respect to enzyme-substrate interactions, and subunit-subunit interfaces that might be related to the different biochemical characteristics. The PROCHECK scores for both models were within recommended intervals. The generated models are similar to the X-ray crystal structure of Z. mobilis PDC in terms of binding modes of the cofactor, the position of Mg(2+), and the amino acids that form the active sites. However, subunit-subunit interface analysis showed lower H-bonding in both models compared with X-ray crystal structure of Z. mobilis PDC, suggesting a smaller interface area and the possibility of conformational change upon substrate binding in both models. Both models have predicted lower affinity towards branched and aromatic 2-keto acids, which correlated with the molecular volumes of the ligands. The models shed valuable information necessary for further improvement of PDC enzymes for industrial production of ethanol and other products.  相似文献   

13.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

14.
The nucleotide sequence of two cloned rat lens β-crystallin cDNAs pRLβB3-2 and pRLβB1-3 has been determined. pRLβB3-2 contains the complete coding information for a β-crystallin, designated βB3, of 210 amino acid residues. pRLβB1-3 is incomplete at its 5′ end; the 5′ codogenic information which is not present in this cDNA clone was deduced from the cloned gene. pRLβB1-3 codes for a β-crystallin polypeptide, designated βB1, whose full length is 247 amino acid residues. Considerable sequence homology is noted between the amino- and carboxy-terminal halves of each protein. The two rat β-crystallins show a substantial sequence homology with each other (60%) as well as with the published sequences of rat γ-crystallin (37%) and bovine and murine β-crystallins (55 and 45%). All these proteins have a two-domain structure which, like the bovine γII-crystallin, might be folded into four remarkably similar protein motifs. Our data further indicate that the β-crystallins can be subdivided into two groups which are evolutionarily related. Both groups are, although more distantly, also related to the γ-crystallins.  相似文献   

15.
Proteins evolve through point mutations as well as by insertions and deletions (indels). During the last decade it has become apparent that protein regions that do not fold into three-dimensional structures, i.e. intrinsically disordered regions, are quite common. Here, we have studied the relationship between protein disorder and indels using HMM–HMM pairwise alignments in two sets of orthologous eukaryotic protein pairs. First, we show that disordered residues are much more frequent among indel residues than among aligned residues and, also are more prevalent among indels than in coils. Second, we observed that disordered residues are particularly common in longer indels. Disordered indels of short-to-medium size are prevalent in the non-terminal regions of proteins while the longest indels, ordered and disordered alike, occur toward the termini of the proteins where new structural units are comparatively well tolerated. Finally, while disordered regions often evolve faster than ordered regions and disorder is common in indels, there are some previously recognized protein families where the disordered region is more conserved than the ordered region. We find that these rare proteins are often involved in information processes, such as RNA processing and translation. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

16.
17.
Membrane inlet mass spectrometry (MIMS) uses diffusion across a permeable membrane to detect in solution uncharged molecules of small molecular weight. We point out here the application of MIMS to determine catalytic properties of decarboxylases using as an example catalysis by oxalate decarboxylase (OxDC) from Bacillus subtilis. The decarboxylase activity generates carbon dioxide and formate from the nonoxidative reaction but is accompanied by a concomitant oxidase activity that consumes oxalate and oxygen and generates CO2 and hydrogen peroxide. The application of MIMS in measuring catalysis by OxDC involves the real-time and continuous detection of oxygen and product CO2 from the ion currents of their respective mass peaks. Steady-state catalytic constants for the decarboxylase activity obtained by measuring product CO2 using MIMS are comparable to those acquired by the traditional endpoint assay based on the coupled reaction with formate dehydrogenase, and measuring consumption of O2 using MIMS also estimates the oxidase activity. The use of isotope-labeled substrate (13C2-enriched oxalate) in MIMS provides a method to characterize the catalytic reaction in cell suspensions by detecting the mass peak for product 13CO2 (m/z 45), avoiding inaccuracies due to endogenous 12CO2.  相似文献   

18.
Glycosyltransferases comprise highly divergent groups of enzymes, which play a central role in the synthesis of complex glycans. Because the repertoire of glycosyltransferases in the genome determines the range of synthesizable glycans, and because the increasing amount of genome sequence data is now available, it is essential to examine these enzymes across organisms to explore possible structures and functions of the glycoconjugates. In this study, we systematically investigated 36 eukaryotic genomes and obtained 3426 glycosyltransferase homologs for biosynthesis of major glycans, classified into 53 families based on sequence similarity. The families were further grouped into six functional categories based on the biosynthetic pathways, which revealed characteristic patterns among organism groups in the degree of conservation and in the number of paralogs. The results also revealed a strong correlation between the number of glycosyltransferases and the number of coding genes in each genome. We then predicted the ability to synthesize major glycan structures including N-glycan precursors and GPI-anchors in each organism from the combination of the glycosyltransferase families. This indicates that not only parasitic protists but also some algae are likely to synthesize smaller structures than the structures known to be conserved among a wide range of eukaryotes. Finally we discuss the functions of two large families, sialyltransferases and β4-glycosyltransferases, by performing finer classifications into subfamilies. Our findings suggest that universality and diversity of glycans originate from two types of evolution of glycosyltransferase families, namely conserved families with few paralogs and diverged families with many paralogs.  相似文献   

19.
克隆人鸟氨酸脱羧酶抗酶1(Homo sapiensornithine decarboxylase antizyme 1,HOAZ1)开放性阅读框+1核糖体移码位点缺失的突变基因,构建突变基因的原核表达质粒,分离纯化其原核表达的重组蛋白。采用巢式-PCR和重叠延伸-PCR技术,从人非小细胞肺癌细胞株A549的cDNA中获得人类鸟氨酸脱羧酶抗酶1开放性阅读框+1核糖体移码(+1RF)位点缺失突变的基因序列(DM-HOAZ1)。将该序列克隆到原核表达载体pET-28a(+)后,转化表达菌Rosseta(DE3)感受态细胞。阳性克隆用IPTG诱导重组蛋白表达,然后在尿素变性条件下经Ni-NTA树脂亲和层析纯化重组HOAZ1。原核表达和纯化的HOAZ1重组蛋白用Western Blot鉴定。结果显示,成功获得HOAZ1开放阅读框中+1RF位点缺失的突变基因和该突变基因的原核表达质粒pET-28a(+)/DM-HOAZ1;用pET-28a(+)/DM-HOAZ1转化大肠杆菌后,HOAZ-1可被IPTG诱导性高表达,且表达量随诱导时间延长递增;原核表达的HOAZ1可用Ni-NTA树脂亲和层析有效纯化。建立了原核表达和分离纯化HOAZ1蛋白的试验方法,为进一步研究HOAZ1的功能和临床应用奠定了基础。  相似文献   

20.
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5′-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号