首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin (5-hydroxytryptamine; 5-HT) is a CNS neurotransmitter increasingly recognized to exert immunomodulatory effects outside the CNS that contribute to the pathogenesis of autoimmune and chronic inflammatory diseases. 5-HT signals to activate the RhoA/Rho kinase (ROCK) pathway, a pathway known for its ability to regulate phagocytosis. The clearance of apoptotic cells (i.e. efferocytosis) is a key modulator of the immune response that is inhibited by the RhoA/ROCK pathway. Because efferocytosis is defective in many of the same illnesses where 5-HT has been implicated in disease pathogenesis, we hypothesized that 5-HT would suppress efferocytosis via activation of RhoA/ROCK. The effect of 5-HT on efferocytosis was examined in murine peritoneal and human alveolar macrophages, and its mechanisms were investigated using pharmacologic blockade and genetic deletion. 5-HT impaired efferocytosis by murine peritoneal macrophages and human alveolar macrophages. 5-HT increased phosphorylation of myosin phosphatase subunit 1 (Mypt-1), a known ROCK target, and inhibitors of RhoA and ROCK reversed the suppressive effect of 5-HT on efferocytosis. Peritoneal macrophages expressed the 5-HT transporter and 5-HT receptors (R) 2a, 2b, but not 2c. Inhibition of 5-HTR2a and 5-HTR2b had no effect on efferocytosis, but blockade of the 5-HT transporter prevented 5-HT-impaired efferocytosis. Genetic deletion of the 5-HT transporter inhibited 5-HT uptake into peritoneal macrophages, prevented 5-HT-induced phosphorylation of Mypt-1, reversed the inhibitory effect of 5-HT on efferocytosis, and decreased cellular peritoneal inflammation. These results suggest a novel mechanism by which 5-HT might disrupt efferocytosis and contribute to the pathogenesis of autoimmune and chronic inflammatory diseases.  相似文献   

2.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

3.
Apoptotic cell removal (efferocytosis) is an essential process in the regulation of inflammation and tissue repair. We have shown that monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) enhances efferocytosis by alveolar macrophages in murine bacterial pneumonia. However, the mechanism by which MCP-1 exerts this effect remains to be determined. Here we explored that hypothesis that MCP-1 enhances efferocytosis through a Rac1/phosphatidylinositol 3-kinase (PI3-kinase)-dependent mechanism.We assessed phagocytosis of apoptotic cells by MCP-1 treated murine macrophages in vitro and in vivo. Rac activity in macrophages was measured using a Rac pull down assay and an ELISA based assay (GLISA). The downstream Rac1 activation pathway was studied using a specific Rac1 inhibitor and PI3-kinase inhibitor in in vitro assays.MCP-1 enhanced efferocytosis of apoptotic cells by murine alveolar macrophages (AMs), peritoneal macrophages (PMs), the J774 macrophage cell line (J774s) in vitro, and murine AMs in vivo. Rac1 activation was demonstrated in these cell lines. The effect of MCP-1 on efferocytosis was completely negated by the Rac1 inhibitor and PI3-kinase inhibitor.We demonstrated that MCP-1 enhances efferocytosis in a Rac1-PI3 kinase-dependent manner. Therefore, MCP-1-Rac1-PI3K interaction plays a critical role in resolution of acute lung inflammation.  相似文献   

4.
Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.  相似文献   

5.
Phagocytosis of apoptotic cells, also called efferocytosis, is an essential feature of immune responses and critical to resolution of inflammation. Impaired efferocytosis is associated with an unfavorable outcome from inflammatory diseases, including acute lung injury and pulmonary manifestations of cystic fibrosis. High mobility group protein-1 (HMGB1), a nuclear nonhistone DNA-binding protein, has recently been found to be secreted by immune cells upon stimulation with LPS and cytokines. Plasma and tissue levels of HMGB1 are elevated for prolonged periods in chronic and acute inflammatory conditions, including sepsis, rheumatoid arthritis, acute lung injury, burns, and hemorrhage. In this study, we found that HMGB1 inhibits phagocytosis of apoptotic neutrophils by macrophages in vivo and in vitro. Phosphatidylserine (PS) is directly involved in the inhibition of phagocytosis by HMGB1, as blockade of HMGB1 by PS eliminates the effects of HMGB1 on efferocytosis. Confocal and fluorescence resonance energy transfer demonstrate that HMGB1 interacts with PS on the neutrophil surface. However, HMGB1 does not inhibit PS-independent phagocytosis of viable neutrophils. Bronchoalveolar lavage fluid from Scnn(+) mice, a murine model of cystic fibrosis lung disease which contains elevated concentrations of HMGB1, inhibits neutrophil efferocytosis. Anti-HMGB1 Abs reverse the inhibitory effect of Scnn(+) bronchoalveolar lavage on efferocytosis, showing that this effect is due to HMGB1. These findings demonstrate that HMGB1 can modulate phagocytosis of apoptotic neutrophils and suggest an alternative mechanism by which HMGB1 is involved in enhancing inflammatory responses.  相似文献   

6.
Lovastatin is a very specific and potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which regulates a rate-limiting step in the cellular synthesis of isoprenoid and cholesterol. In this study, we demonstrate that treatment of rat ovarian metastatic OV1N cells with lovastatin induces apoptosis. Furthermore, apoptotic death of lovastatin-treated OV1N cells can be prevented by the addition of either mevalonic acid (an immediate metabolite of HMG-CoA) or farnesyl pyrophosphate (one of the downstream products of mevalonic acid metabolism). However, metabolic derivatives of farnesyl pyrophosphate failed to prevent the apoptotic effect of lovastatin on cells. Therefore farnesyl pyrophosphate appears to be important for cell survival and the relationship of this compound to protein farnesylation and apoptosis induction is discussed.  相似文献   

7.
HMG-CoA reductase inhibitors (i.e., statins) attenuate C-terminal isoprenylation of Rho GTPases, thereby inhibiting UV-C-induced activation of c-Jun-N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs). Inhibition of UV-C-triggered JNK/SAPK activation by lovastatin is due to inhibition of Rac-SEK1/MKK4-mediated phosphorylation of JNKs/SAPKs at Thr183/Tyr185. UV-C-stimulated phosphorylation of p38 kinase (Thr180/Tyr182) is also impaired by lovastatin. Cell killing provoked by UV-C irradiation was significantly inhibited by lovastatin. This was paralleled by a reduced frequency of chromosomal aberrations, accelerated recovery from UV-C-induced transient replication blockage, inhibition of Chk1 kinase activation and impaired cyclinB1 expression. Furthermore, UV-C-induced activation of caspases and apoptotic death was largely reduced by lovastatin. Inhibition of JNK/SAPK by transient overexpression of dominant-negative JNK1/SAPK1 also conferred resistance to UV-C light and attenuated activation of caspase 3. Based on the data, we suggest that lovastatin-provoked resistance to UV-C light is due to the inhibition of UV-C-inducible Rac-SEK1/MKK4-JNK/SAPK-dependent signal mechanisms regulating cell cycle progression and activation of caspases and apoptotic death.  相似文献   

8.
Statins are a group of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors which are most effective as lipid lowering agents, and are currently extensively used clinically. Recently, it was also shown that statins affect the immune response. We investigated the effects of lovastatin on the maturation and functional changes of bone marrow-derived dendritic cells (BM-DC). Lovastatin inhibited MHC class II and CD40 expression on DC in a dose-dependent manner, but had lesser effects on CD16, CD80, CD86, and CD11b expression. Nuclear extracts of lovastatin treated DC had decreased NF-kappaB DNA binding activity. Although antigen capture capacity of DC was not affected by lovastatin, the T-cell stimulatory activity of DC was inhibited. Lovastatin up-regulated DC pro-inflammatory cytokine production induced by LPS as measured by intracellular cytokine staining, ELISA and cDNA microarrays. Mevalonate, added in vitro, prevented these effects. These results indicate that lovastatin may inhibit BM-DC maturation and up-regulate cytokine production through a mevalonate dependent pathway, and may cause adverse effects on either innate or adaptive immunity.  相似文献   

9.
Lovastatin, a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity, was used to study the regulation of cholesterol metabolism and the basolateral-membrane secretion of triacylglycerol and cholesterol in the human intestinal cell line CaCo-2. At 0.1 microgram/ml, lovastatin decreased 3H2O incorporation into cholesterol by 71%. In membranes prepared from cells incubated with lovastatin for 18 h, HMG-CoA reductase activity was induced 4-8-fold. Mevalonolactone prevented this induction. In intact cells, lovastatin (10 micrograms/ml) decreased cholesterol esterification by 50%. The reductase inhibitor decreased membrane acyl-CoA:cholesterol O-acyltransferase (ACAT) activity by 50% at 5 micrograms/ml. ACAT inhibition by lavastatin was not reversed by adding excess of cholesterol or fatty acyl-CoA to the assay. Lovastatin, in the presence or absence of mevalonolactone, decreased the basolateral secretion of newly synthesized cholesteryl esters and triacylglycerols. Lovastatin also inhibited the esterification of absorbed cholesterol and the secretion of this newly synthesized cholesteryl ester. Lovastatin is a potent inhibitor of cholesterol synthesis in CaCo-2 cells. Moreover, it is a direct inhibitor of ACAT activity, independently of its effect on HMG-CoA reductase and cholesterol synthesis.  相似文献   

10.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

11.
Removal of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation. Efferocytosis in primarily murine macrophages and dendritic cells has been shown to require TAM RTKs, with MERTK and AXL being critical for clearance of apoptotic cells. The functional role of human orthologs, especially the exact contribution of each individual receptor is less well studied. Here we show that human macrophages differentiated in vitro from iPSC-derived precursor cells express both AXL and MERTK and engulf apoptotic cells. TAM RTK agonism by the natural ligand growth-arrest specific 6 (GAS6) significantly enhanced such efferocytosis. Using a newly-developed mouse model of kinase-dead MERTK, we demonstrate that MERTK kinase activity is essential for efferocytosis in peritoneal macrophages in vivo. Moreover, human iPSC-derived macrophages treated in vitro with blocking antibodies or small molecule inhibitors recapitulated this observation. Hence, our results highlight a conserved MERTK function between mice and humans, and the critical role of its kinase activity in homeostatic efferocytosis.Subject terms: Immune cell death, Peritoneal macrophages  相似文献   

12.
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective ‘efferocytosis’), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells.We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis.Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown.Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.  相似文献   

13.
The resolution of inflammation, as part of standard host defense mechanism, is the process to guarantee timely termination of inflammatory responses and eventual restoration of tissue homeostasis . It is mainly achieved via efferocytosis, during which pro-resolving macrophages clear apoptotic neutrophils at the inflammatory site. Unfortunately, impaired resolution can be the leading cause of chronic inflammatory disorders and some autoimmune diseases. Existing studies have provided relatively comprehensive understandings about the recognition and uptake of apoptotic neutrophils by macrophages during early phases of efferocytosis. However, lack of information concerns macrophage metabolism of apoptotic cell-derived metabolites after being released from phagolysosomes or the relationship between such metabolism and efferocytosis. Notwithstanding, three recent studies have revealed macrophage metabolism of cholesterol, fatty acids and arginine, as well as their respective functions in the context of inflammation-resolution. This review provides an overview of the resolution of inflammation, efferocytosis and the key players involved, followed by a focus on the metabolism of apoptotic cell-derived metabolites within efferocytes. Hypotheses of more potential apoptotic cell-derived metabolites and their possible roles in the resolution are also formulated. Understanding the effect of these metabolites further advances the concept that apoptotic cells act as active players to regulate resolution, and also suggests novel therapeutic strategies for diseases driven by defective resolution and even cancer that may be treated through enhanced efferocytosis.  相似文献   

14.
Since cholesterol biosynthesis is an integral part of cellular metabolism, several HMG-CoA reductase inhibitors were systematically analyzed in in vitro, ex vivo and in vivo sterol synthesis assays using [14C]acetate incorporation into digitonin precipitable sterols as a marker of cholesterol synthesis. Tissue distribution of radiolabeled CI-981 and lovastatin was also performed. In vitro, CI-981 and PD134967-15 were equipotent in liver, spleen, testis and adrenal, lovastatin was more potent in extrahepatic tissues than liver and BMY21950, pravastatin and PD135023-15 were more potent in liver than peripheral tissues. In ex vivo assays, all inhibitors except lovastatin preferentially inhibited liver sterol synthesis; however, pravastatin and BMY22089 were strikingly less potent in the liver. CI-981 inhibited sterol synthesis in vivo in the liver, spleen and adrenal while not affecting the testis, kidney, muscle and brain. Lovastatin inhibited sterol synthesis to a greater extent than CI-981 in the spleen, adrenal and kidney while pravastatin and BMY22089 primarily affected liver and kidney. The tissue distribution of radiolabeled CI-981 and lovastatin support the changes observed in tissue sterol synthesis. Thus, we conclude that a spectrum of liver selective HMG-CoA reductase inhibitors exist and that categorizing agents as liver selective is highly dependent upon method of analysis.  相似文献   

15.
Heme oxygenase-1 (HO-1) plays a central role in antioxidant and anti-inflammatory actions, which may be mediated through its formation of biliverdin/bilirubin and carbon monoxide. HMG-CoA reductase inhibitors (statins) induce in vitro HO-1 expression and are reported to have pleiotropic benefits that reduce oxidative stress in the vasculature. We characterized the effects of statins on in vivo HO-1 expression in various extravascular tissues: liver, lung, brain, and heart. Adult mice were orally administered simvastatin, lovastatin, atorvastatin, or rosuvastatin. HO activity significantly increased in a statin- and tissue-specific manner, with all statins increasing heart and lung activity within 24 h. Significant elevations of HO-1 protein and mRNA were also observed in heart and lung after atorvastatin treatment. We conclude that in vivo HO-1 induction is statin- and tissue-specific. Through this pathway, statins may confer antioxidant and anti-inflammatory actions in the vasculature and extravascular systems.  相似文献   

16.
Recent studies revealed an importance of a monomeric GTP-binding protein, RhoA, in contraction of bronchial smooth muscle (BSM). RhoA and its downstream have been proposed as a new target for the treatment of airway hyperresponsiveness in asthma. Statins are known to inhibit the functional activation of RhoA via the depletion of geranylgeranylpyrophosphate. To determine the beneficial effects of statins on the airway hyperresponsiveness in allergic bronchial asthma, we investigated the effects of systemic treatment with lovastatin on the augmented BSM contraction and activation of RhoA in rats with allergic bronchial asthma. Rats were sensitized and repeatedly challenged with 2,4-dinitrophenylated Ascaris suum antigen. Animals were also treated with lovastatin (4 mg kg(-1) day(-1) ip) once a day before and during the antigen inhalation period. Repeated antigen inhalation caused a marked BSM hyperresponsiveness to ACh with the increased expression and translocation of RhoA. Lovastatin treatments significantly attenuated both the augmented contraction and RhoA translocation to the plasma membrane. Lovastatin also reduced the increased cell number in bronchoalveolar lavage fluids and histological changes induced by antigen exposure, whereas the levels of immunoglobulin E in sera and interleukins-4, -6, and -13 in bronchoalveolar lavage fluids were not significantly changed. These findings suggest that lovastatin ameliorates antigen-induced BSM hyperresponsiveness, an important factor of airway hyperresponsiveness in allergic asthmatics, probably by reducing the RhoA-mediated signaling.  相似文献   

17.
Lovastatin, a secondary metabolite isolated from fungi, is often used as a representative drug to reduce blood lipid concentration and treat hypercholesterolemia. Its structure is similar to that of HMG-CoA. Lovastatin inhibits the binding of the substrate to HMG-CoA reductase, and strongly competes with HMG-CoA reductase (HMGR), thereby exerting a hypolipidemic effect. Further, its safety has been confirmed in vivo and in vitro. Lovastatin also has anti-inflammatory, anti-cancer, and neuroprotective effects. Therefore, the biological activity of lovastatin, especially its anti-cancer effect, has garnered research attention. Several in vitro studies have confirmed that lovastatin has a significant inhibitory effect on cancer cell viability in a variety of cancers (such as breast, liver, cervical, lung, and colon cancer). At the same time, lovastatin can also increase the sensitivity of some types of cancer cells to chemotherapeutic drugs and strengthen their therapeutic effect. Lovastatin inhibits cell proliferation and regulates cancer cell signaling pathways, thereby inducing apoptosis and cell cycle arrest. This article reviews the structure, biosynthetic pathways, and applications of lovastatin, focusing on the anti-cancer effects and mechanisms of action.  相似文献   

18.
The HMG-CoA reductase inhibitor, lovastatin, blocks targeting of the Rho and Ras families of small GTPases to their active sites by inhibiting protein prenylation. Control NIH3T3 cells, and those overexpressing human cyclin E protein were treated with lovastatin for 24 h to determine the effects of cyclin E overexpression on lovastatin-induced growth arrest and cell rounding. Lovastatin treatment (10 microM) of control 3T3 cells resulted in growth arrest at G1 accompanied by actin stress fiber disassembly, cell rounding, and decreased active RhoA from the membranous protein fraction. By contrast, in NIH3T3 cells overexpressing cyclin E, lovastatin did not cause loss of RhoA from the membrane (active) protein fraction, actin stress fiber disassembly, cell rounding or growth arrest within 24 h. Analysis of cell cycle proteins showed that 24 h of lovastatin treatment in the control cells caused an elevation in the levels of the cyclin-dependent kinase inhibitor p27(kip1), inhibition of both cyclin E- and cyclin A-dependent kinase activity, and decreased levels of hyperphosphorylated retinoblastoma protein (pRb). By contrast, lovastatin treatment of the cyclin E overexpressors did not suppress either cyclin E- or cyclin A-dependent kinase activity, nor did it alter the level of maximally phosphorylated pRb, despite increased levels of p27(kip1). However, by 72 h, the cyclin E overexpressors rounded up but remained attached to the substratum, indicating a delayed response to lovastatin. In contrast with lovastatin, inactivation of membrane-bound Rho proteins (i.e., GTP-bound RhoA, RhoB, RhoC) with botulinum C3 transferase caused cell rounding and G1 growth arrest in both cell types but did not inhibit cyclin E-dependent histone kinase activity in the cyclin E overexpressors. In addition, 24 h of cycloheximide treatment caused depletion of RhoA from the membrane (active) fraction in neo cells, but in the cells overexpressing cyclin E, RhoA remained in the active (membrane-associated) fraction. Our observations suggest that (1) RhoA activation occurs downstream of cyclin E-dependent kinase activation, and (2) overexpression of cyclin E decreased the turnover rate of active RhoA.  相似文献   

19.
Removal of apoptotic cells from inflammatory sites is an important step in the resolution of inflammation. Both murine and human macrophages stimulated with TNF-alpha or directly administered arachidonic acid showed an impaired ability to ingest apoptotic cells (efferocytosis). The inhibition was shown to be due to generation of reactive oxygen species, was blocked with a superoxide dismutase mimetic, MnTBAP, and was mimicked by direct addition of H2O2. To determine the mechanism of TNF-alpha-stimulated oxidant production, bone marrow-derived macrophages from gp91(phox)-deficient mice were examined but shown to still produce oxidants and exhibit defective apoptotic cell uptake. In contrast, a specific cytosolic phospholipase A2 inhibitor blocked the oxidant production and reversed the inhibited uptake. The suppressive effect of endogenous or exogenous oxidants on efferocytosis was mediated through activation of the GTPase, Rho. It was reversed in macrophages pretreated with C3 transferase to inactivate Rho or with an inhibitor of Rho kinase. During maturation of human monocyte-derived macrophages, only mature cells exhibited TNF-alpha-induced suppression of apoptotic cell clearance. The resistance of immature macrophages to such inhibition was shown to result not from defective generation of oxidants, but rather, from lack of response of these cells to the oxidants. Overall, the data suggest that macrophages in a TNF-alpha- and oxidant-rich inflammatory environment are less able to remove apoptotic cells and, thereby, may contribute to the local intensity of the inflammatory response.  相似文献   

20.
Hypercholesterolemia is considered an important risk factor in coronary artery disease. Thus the possibility of controlling de novo synthesis of endogenous cholesterol, which is nearly two-thirds of total body cholesterol, represents an effective way of lowering plasma cholesterol levels. Statins, fungal secondary metabolites, selectively inhibit hydroxymethyl glutaryl-coenzyme A (HMG-CoA) reductase, the first enzyme in cholesterol biosynthesis. The mechanism involved in controlling plasma cholesterol levels is the reversible inhibition of HMG-CoA reductase by statins, related to the structural similarity of the acid form of the statins to HMG-CoA, the natural substrate of the enzymatic reaction. Currently there are five statins in clinical use. Lovastatin and pravastatin (mevastatin derived) are natural statins of fungal origin, while symvastatin is a semi-synthetic lovastatin derivative. Atorvastatin and fluvastatin are fully synthetic statins, derived from mevalonate and pyridine, respectively. In addition to the principal natural statins, several related compounds, monacolins and dihydromonacolins, isolated fungal intermediate metabolites, have also been characterized. All natural statins possess a common polyketide portion, a hydroxy-hexahydro naphthalene ring system, to which different side chains are linked. The biosynthetic pathway involved in statin production, starting from acetate units linked to each other in head-to-tail fashion to form polyketide chains, has been elucidated by both early biogenetic investigations and recent advances in gene studies. Natural statins can be obtained from different genera and species of filamentous fungi. Lovastatin is mainly produced by Aspergillus terreus strains, and mevastatin by Penicillium citrinum. Pravastatin can be obtained by the biotransformation of mevastatin by Streptomyces carbophilus and simvastatin by a semi-synthetic process, involving the chemical modification of the lovastatin side chain. The hypocholesterolemic effect of statins lies in the reduction of the very low-density lipoproteins (VLDL) and LDL involved in the translocation of cholesterol, and in the increase in the high-density lipoproteins (HDL), with a subsequent reduction of the LDL- to HDL-cholesterol ratio, the best predictor of atherogenic risk. The use of statins can lead to a reduction in coronary events related to hypercholesterolemia, but the relationship between benefit and risk, and any possible interaction with other drugs, must be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号