首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of ribosomal protein synthesis in Escherichia coli B/r.   总被引:1,自引:1,他引:0       下载免费PDF全文
The differential synthesis rate of ribosomal protein (r-protein), alpha-r (synthesis rate of r-protein divided by synthesis rate of total protein), was measured during the cell division cycle. It was observed that alpha-r remained essentially constant and was not measurably affected by duplication of the r-protein gene cluster (i.e., str-spc region) during the process of chromosome replication. It was further observed that the rate of total protein synthesis and r-protein synthesis increased continuously and uniformly during the entire cell cycle. This gene dosage independence of the synthesis rate of r-protein was similar to that observed earlier for the synthesis of ribosomal ribonucleic acid (rRNA). These observations indicate that the synthesis rates of the protein and RNA components of the ribosome are coordinately balanced during the entire cell division cycle and are not significantly perturbed by duplication of the r-protein or rRNA genes. Furthermore, this balanced synthesis insures that neither free rRNA nor free r-protein accumulate in appreciable amounts during balanced growth.  相似文献   

3.
4.
5.
6.
The soluble fraction extracted from Escherichia coli A19 (Hfr, rel met rns) during early and late times of phenotypic and genotypic induced relaxed control have been examined for the possible accumulation of ribosomal proteins (r-proteins) and rRNA species during this time of unbalanced macromolecular synthesis. Ribosomal proteins and rRNA species were not found to accumulate within the soluble fraction at any time during this period of relaxed control; even after the typical rRNA accumulation had ceased, r-proteins did not accumulate. It is concluded, from these and related observations, that the r-proteins and rRNA species known to be produced during relaxation must immediately associate to form the unusual ribonucleoprotein particles (e.g. 'relaxed particles' and 'chloramphenicol particles') characteristic of periods of relaxed control. Since r-proteins do not accumulate even when net RNA accumulation halts, it appears that some elements of the normal, basic co-ordination between rRNA and r-protein synthesis/stability persist even during relaxed control.  相似文献   

7.
8.
9.
10.
Using ColE1-TnA hybrid plasmid RSF2124 as the cloning vector, we constructed a hybrid plasmid, pNO1001, which carried seven ribosomal protein (r-protein) genes in the spc operon together with their promoter. The plasmid also carried three r-protein genes which precede the spc operon, but did not carry the bacterial promoter for these genes. Expression of r-protein genes carried by pNO1001 was studied by measuring messenger ribonucleic acid and r-protein synthesis in cells carrying the plasmid. It was found that the messenger ribonucleic acid for all the promoter-distal r-protein genes was synthesized in large excess relative to messenger ribonucleic acid from other chromosomal r-protein genes which are not carried by the plasmid. However, only the two promoter-proximal r-proteins, L14 and L24, were markedly overproduced. The absence of large gene dosage effects on the synthesis of other distal proteins appeared to be due, at least in part, to preferential inactivation and/or degradation of the distal message which codes for these proteins; in addition, some preferential inhibition of translation of the distal message might also have been involved. Overproduced L14 and L24 were found to be degraded in recA+ strains at both 30 and 42 degrees C; in recA strains, the degradation took place at 42 degrees C but was very slow or absent at 30 degrees C. The recA strains carrying pNO1001 failed to form colonies at 30 degrees C, presumably because of overaccumulation of r-proteins. The results suggest that degradation of excess r-proteins is an important physiological process.  相似文献   

11.
12.
The spinach chloroplast ribosomal protein (r-protein) CL22 contains a central region homologous to the Escherichia coli r-protein L22 plus long N- and C-terminal extensions. We show in this study that the CL22 combines two properties which in E. coli ribosome are split between two separate proteins. The CL22 which binds to the 5S rRNA can also be linked to an erythromycin derivative added to the 50S ribosomal subunit. This latter property is similar to that of the E. coli L22 and suggests a similar localization in the 50S subunit. We have overproduced the r-protein CL22 and deleted forms of this protein in E. coli. We show that the overproduced CL22 binds to the chloroplast 5S rRNA and that the deleted protein containing the N- and C-terminal extensions only has lost the 5S rRNA binding property. We suggest that the central homologous regions of the CL22 contains the RNA binding domain.  相似文献   

13.
14.
The suggestion that compensation for overabundant mRNA of the genes for Saccharomyces cerevisiae ribosomal protein (r-protein) L3, L29, or rp59 occurs by translation repression has been reinvestigated. First, analysis of the distribution of these three mRNAs in polysome profiles revealed no differences between normal and mRNA-overproducing strains, indicating that initiation of r-protein translation is not repressed under conditions of mRNA overaccumulation. Second, experiments involving radioactive pulse-labeling of proteins were done by using a modified method of data collection and analysis that allows quantitation and correction for fast decay during the pulse. These measurements revealed that the synthesis rate of the three r-proteins is increased when their mRNA levels are elevated and that their decay rate is also high, with half-lives ranging from a fraction of a minute to more than 10 min. We conclude that accumulation of excess r-protein mRNA has no effect on translation rate; rapid decay of protein during the course of the labeling period can account for the apparent discrepancy between mRNA levels and protein synthesis rates. Yeast r-proteins, when produced in excess, are among the most rapidly degraded proteins so far described.  相似文献   

15.
Summary In E. coli strain XH56 the synthesis of all RNA species is blocked upon shifting the culture to the non-permissive temperature. The decay of specific messenger RNA species coding for individual ribosomal (r) proteins was followed by measuring the rate of r-protein synthesis by pulse labelling at various times after the shift. The half-lives of the average 30S r-protein and 50S r-protein mRNA species are identical (1.75 min) and shorter than those of the average messenger coding for total cell proteins (2.75 min). Most individual r-protein messengers have a half-life in the same range (1.50–2.00). Only a few r-protein messengers have significantly longer half-lives: S1 (2.80 min), S17 (3.29 min), L29 (2.30 min), L31 (2.30 min), L32 (2.33 min) and L16 (2.60 min). The results indicate that the degradation of most individual r-protein mRNA species is not specifically controlled.After a few min at the non-permissive temperature, all protein synthesis is blocked. The restart of r-protein synthesis was followed after shifting the culture back to the permissive temperature. The recovery of cell growth is very slow. During this period preferential r-protein synthesis was observed. Moreover differential rates of biosynthesis of r-proteins was obtained, it may be indicative of specific regulatory process(es).  相似文献   

16.
17.
18.
Dictyostelium ribosomal RNA is processed during transcription   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Involvement of DNA gyrase in the transcription of ribosomal RNA   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号