首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Year-round studies of epiphytic yeast communities revealed that the number of ascosporogenous yeasts of the genus Saccharomyces inhabiting living and decaying leaves of some plants increased considerably in certain short periods (at the beginning of summer and in winter). Massive isolation of saccharomycetes was performed from 11 plant species; earlier, these yeasts had been revealed mainly in sugar-rich substrates. The isolates were identified as Saccharomyces paradoxus based on their physiological properties and RELP analysis of 5.8S-ITS. Possible reasons for short-term increases in the number of saccharomycetes in plant phyllosphere are discussed.  相似文献   

2.
Many years of research has confirmed a wide distribution of anamorphous ascomycete yeasts in the phyllosphere of diverse plants of Moscow and the Moscow oblast. Based on the standard morphological and physiological criteria, on the results of restriction analysis of the 5.8S-ITS rDNA region, and on the sequencing of the D1D2 region of 26S rDNA, these yeasts were identified as Candida oleophila Montrocher. Previous isolation of this species has been rare, possibly due to its incorrect identification. This species, together with phytobiotic basidiomycete yeasts, was shown to be dominant in the yeast epiphytic communities on the surface parts of plants. The relative abundance of C. oleophila is highest on plant fruits and increases significantly by the end of the vegetation period. Wide occurrence of this yeast species on fruits and in the phyllosphere may be related to its ability to compete with rapidly growing phytopathogenic fungi.  相似文献   

3.
Significant differences were revealed in the taxonomic structure of the epiphytic yeast communities formed on Sphagnum mosses and on the leaves of vascular plants. On mosses, low abundance of red yeasts was found (the most typical epiphytes on vascular plant leaves), along with a relatively high content and diversity of nonpigmented dimorphic basidiomycetes related to the order Leucosporidiales. The species composition of epiphytic yeasts from mosses is different from that of both forest and meadow grasses and of the parts of vascular plants submerged in the turf. The specific composition of the Sphagnum mosses yeast community is probably determined by the biochemical characteristics of this environment, rather than by the hydrothermal regime in the turf.  相似文献   

4.
The taxonomic structure of yeast communities was studied in forest litter and soil, as well as in substrates transformed by the activity of Lumbricus terrestris earthworms (leaves in heaps, the gut contents, and coproliths). The activity of L. terrestris has a weak effect on the total yeast abundance but results in substantial changes in the community taxonomic composition. The share of ascomycetous yeasts is significantly higher in the substrates associated with the activity of earthworms. The teleomorphic ascomycetes Williopsis saturnus were isolated from the gut contents. The effect of earthworms on the composition of the yeast community in the process of forest litter destruction is more pronounced than seasonal changes.  相似文献   

5.
The cotyledons of whole intact acorns were shown to contain yeasts; their number increased sharply before acorn germination. The yeasts in the cotyledons are mainly represented by one species, Candida railenensis, with the number in the germinating cotyledons reaching 107 CFU/g. After germination or exocarp destruction, the cotyledons were colonized by the usual epiphytic and litter yeasts Cryptococcus albidus, Rhodotorula glutinis, and Cystofilobasidium capitatum.  相似文献   

6.
Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 × 107 cells ml?1. About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Planctomycetes. The population sizes of the Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of the Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of the Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.  相似文献   

7.
Yeast abundance and species diversity of endophytic complexes in galls (cecidia) formed on the leaves of Salix fragilis, Salix caprea, Quercus robur, Tilia cordata, and Ulmus laevis and the epiphytic yeast communities of undamaged leaves of these plants were studied. Dynamics of yeast abundance in the galls was significantly different from that of the epiphytic yeast communities. Maximum numbers of endophytic yeast cells in the galls (up to 104 CFU/g) were comparable to abundance of epiphytic yeasts. A total of 14 species of endophytic yeasts were isolated from galls of different plants. Ascomycetous yeasts were found to predominate in the insect galls on willows and oak, while basidiomycetous yeasts dominated in mite galls on linden and elm, as well as on plant leaves. These results indicate that gall formation may be considered not only as a bidirectional pathological process of the interaction between plants and invertebrates, but also as a process in which the endophytic microbial population of the galls plays an important role.  相似文献   

8.
Yeast abundance and species diversity in the latex of rubber tree Hevea brasiliensis (Willd. ex Juss.) Müll. Arg., on its green leaves, and in soil below the plant were studied. The yeasts present in the fresh latex in numbers of up to 5.5 log(CFU/g) were almost exclusively represented by the species Candida heveicola. This species was previously isolated from Hevea latex in China. In the course of natural modification of the latex (turned from liquid to solid form), yeast diversity increased, while yeast abundance decreased. The yeasts in thickened and solidified latex were represented by typical epiphytic and ubiquitous species: Kodamea ohmeri, Debaryomyces hansenii, Rhodotorula mucilaginosa, and synanthropic species Candida parapsilosis and Cutaneotrichosporon arboriformis. The role of yeasts in latex modification at the initial stages of succession and their probable role in development of antifungal activity in the latex are discussed.  相似文献   

9.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

10.
This study assessed the microbial diversity, activity, and composition of methane-oxidizing communities of a subarctic wetland in Russia with mosaic cover of Sphagnum mosses and lichens of the genera Cladonia and Cetraria. Potential methane-oxidizing activity of peat sampled from lichen-dominated wetland sites was higher than that in the sites dominated by Sphagnum mosses. In peat from lichen-dominated sites, major bacterial groups identified by high-throughput sequencing of the 16S rRNA genes were the Acidobacteria (35.4–41.2% of total 16S rRNA gene reads), Alphaproteobacteria (19.1–24.2%), Gammaproteobacteria (7.9–11.1%), Actinobacteria (5.5–13.2%), Planctomycetes (7.2–9.5%), and Verrucomicrobia (5.1–9.5%). The distinctive feature of this community was high proportion of Subdivision 2 Acidobacteria, which are not characteristic for boreal Sphagnum peat bogs. Methanotrophic community composition was determined by molecular analysis of the pmoA gene encoding particulate methane monooxygenase. Most (~80%) of all pmoA gene fragments revealed in peat from lichen-dominated sites belonged to the phylogenetic lineage represented by a microaerobic spiral-shaped methanotroph, “Candidatus Methylospira mobilis”. Members of the genus Methylocystis, which are typical inhabitants of boreal Sphagnum peat bogs, represented only a minor group of indigenous methanotrophs. The specific feature of a methanotrophic community in peat from lichen-dominated sites was the presence of uncultivated USCα (Upland Soil Cluster alpha) methanotrophs, which are typical for acidic upland soils showing atmospheric methane oxidation. The methanotrophic community composition in lichen-dominated sites of a tundra wetland, therefore, was markedly different from that in boreal Sphagnum peat bogs.  相似文献   

11.
The yeasts of the Malassezia genus are opportunistic microorganisms and can cause human and animal infections. They are commonly isolated from the skin and auricular canal of mammalians, mainly dogs and cats. The present study was aimed to isolate Malassezia spp. from the acoustic meatus of bats (Molossus molossus) in the Montenegro region, “Rondônia”, Brazil. From a total of 30 bats studied Malassezia spp. were isolated in 24 (80%) animals, the breakdown by species being as follows (one Malassezia sp. per bat, N = 24): 15 (62.5%) M. pachydermatis, 5 (20.8%) M. furfur, 3 (12.5%) M. globosa and 1 (4.2%) M. sympodialis. This study establishes a new host and anatomic place for Malassezia spp., as it presents the first report ever of the isolation of this genus of yeasts in the acoustic meatus of bats.  相似文献   

12.
A comparative study of the adhesion of epiphytic bacteria and marine free-living, saprophytic, and pathogenic bacteria on seagrass leaves and abiotic surfaces was performed to prove the occurrence of true epiphytes of Zostera marina and to elucidate the bacterium-plant symbiotrophic relationships. It was shown that in the course of adhesion to the seagrass leaves of two taxonomically different bacteria, Cytophaga sp. KMM 3552 and Pseudoalteromonas citrea KMM 461, isolated from the seagrass surface, the number of viable cells increased 3–7-fold after 60 h of incubation, reaching 1.0–2.0 × 105 cells/cm2; however, in the case of adhesion of these bacteria to abiotic surfaces, such as glass or metal, virtually no viable cells were observed after 60 h of incubation. Such selectivity of cell adhesion was not observed in the case of three other bacterial species studied, viz., Vibrio alginolyticus KMM 3551, Bacillus subtilis KMM 430, and Pseudomonas aeruginosa KMM 433. The amount of viable cells of V. alginolyticus KMM 3551 absorbed on glass and metal surfaces increased twofold after 40 h of incubation. The cells of saprophytic B. subtilis KMM 430 and pathogenic P. aeruginosa KMM 433 adsorbed on three studied substrata remained viable for 36 h and died by the 60th hour of incubation.  相似文献   

13.
Pythium species are economically significant soilborne plant pathogens with worldwide distribution, causing seedling damping-off or root rot diseases. Pythium phragmitis is a newly described pathogen of common reed (Phragmites australis), widespread in the reed-belt of Lake Constance, Germany. It is highly aggressive towards reed leaves and seedlings, but obviously does not affect roots. In the context of ‘reed decline’ phenomena, P. phragmitis infection of reed inundated during flooding events may be of particular significance. We could show that flooding itself is not necessarily detrimental for reed plants. In the presence of the pathogen, however, most submerged leaves and plants were killed within several weeks. Clipped plants did not show regrowth in the Pythium infested treatments. Significant losses in assimilating leaf area of reeds could, thus, be the result of Pythium infection rather than of flooding alone. Therefore, we suggest that the combination of extended flooding and the presence of P. phragmitis might considerably contribute to ‘reed decline’ at Lake Constance. In parallel, we could show that pathogenicity and spread of this species are considerably favoured by rising temperatures. Since an increase in average water temperature has been found for Lake Constance, we propose that P. phragmitis could be an important factor in the dieback of reed stands likely to be promoted by predicted climate change phenomena.  相似文献   

14.
Yeast abundance and species diversity on the surface and in inner tissues of Malus domestica and Pyrus communis fruits under high anthropogenic impact in the city of Moscow (Russia) were studied. Results demonstrated that abundance of epiphytic yeasts on the fruits increased gradually, reaching the maximum of 3.2 × 104 CFU/g on mature fruits. During summer, abundance of endophytes did not change significantly (variation near 2.5 × 103 CFU/g) until complete maturation, while in September their numbers increased to 104 CFU/g. Basidiomycetous yeasts (Filobasidium wieringae, F. magnum, Rhodotorula glutinis, and Rhodosporidiobolus colostri) predominated on the fruit surface. Ascomycetous species were the most diverse group inside the fruits, which quantitatively increased through maturation. It was found that the share of opportunistic species Candida parapsilosis in internal tissues was significant during the entire period of fruit formation and development under anthropogenic impact in the city. Specific properties of epiphytic and endophytic yeast communities developing in natural ecological niches under synanthropic conditions and anthropogenic impact are discussed.  相似文献   

15.
The diversity of nitrogen-fixing microorganisms in the soil of an oligotrophic Sphagnum peat bog was studied by molecular cloning of fragments of the nifH gene encoding one of the main components of the nitrogenase complex. The fragments were amplified from the DNA isolated from the peat samples collected at the same site in January (library I) and November (library II), 2005. Analysis of the nifH sequence libraries revealed high diversity of diazotrophic bacteria in peat soil: the first library consisted of 237 clones and 55 unique sequence types, the second one included 171 clones and 52 sequence types. Comparison of the two clone libraries showed that the composition and population structure of the nitrogen-fixing community depended greatly on the sampling time; they shared only 11 phylotypes. The sequences of representatives of the class Alphaproteobacteria prevailed in both libraries (27% and 57% of clones in libraries I and II, respectively). Representatives of the classes Deltaproteobacteria and Chlorobea were minor components of library I (6% and 7% of clones, respectively), whereas they prevailed in library II (18% and 24% of clones, respectively). Members of the class Chloroflexi were present only in library I, while members of the classes Bacilli, Clostridia, and Methanomicrobia were present only in library II. Our studies demonstrated that, for complete evaluation of the diversity of natural nitrogen-fixing communities, nifH libraries should consist of at least 200–300 clones.  相似文献   

16.
Two strains of Actinobacteria, ACTY and ACTR, were isolated from cellulolytic microbial communities obtained from an ombrotrophic Sphagnum peat bog. The strains were able to degrade cellulose, the main component of plant phytomass in this ecosystem. On the basis of their phenotypic and phylogenetic characteristics, the strains were identified as members of the genus Streptomyces. The isolates developed on media without available nitrogen sources and hydrolyzed cellulose within a temperature range of 5–25°C and in the pH interval from 4.5 to 6.0; they also exhibited acetylene reduction activity. Comparative analysis of the rates of cellulose degradation by the peat-inhabiting streptomyces at 5, 15, and 25°C and at pH values of 4.5 and 6.0, with and without a source of available nitrogen in the medium, indicated that high acidity and low temperatures, typical for boreal Sphagnum peat bogs, are the main factors limiting the growth and hydrolytic activity of these bacteria.  相似文献   

17.

Background and aims

Peatland moss communities play an important role in ecosystem function. Drivers such as fire and atmospheric pollution have the capacity to influence mosses via multiple pathways. Here, we investigate physical and chemical processes which may influence establishment and growth of three key moss species in peatlands.

Methods

A controlled factorial experiment investigated the effects of different peat bulk density, ash deposition and rainwater chemistry treatments on the growth of Sphagnum capillifolium, S. fallax and Campylopus introflexus.

Results

Higher peat bulk density limited growth of both Sphagnum species. S. capillifolium and C. introflexus responded positively to ash deposition. Less polluted rain limited growth of C. introflexus. Biomass was well correlated with percentage cover in all three species.

Conclusions

Peat bulk density increases caused by fire or drainage can limit Sphagnum establishment and growth, potentially threatening peatland function. Ash inputs may have direct benefits for some Sphagnum species, but are also likely to increase competition from other bryophytes and vascular plants which may offset positive effects. Rainwater pollution may similarly increase competition to Sphagnum, and could enhance positive effects of ash addition on C. introflexus growth. Finally, cover can provide a useful approximation of biomass where destructive sampling is undesirable.
  相似文献   

18.
he presence of nitrogen-fixing bacteria of the genus Azospirillum in the soils of acidic raised Sphagnum bogs is revealed for the first time. Three Azospirillum strains, B2, B21, and B22, were isolated as a component of methane-oxidizing enrichment cultures, whereas attempts to isolate them directly from peat samples have failed. The results of comparative analysis of the nucleotide sequences of 16S rRNA genes, DNA-DNA hybridization, and the analysis of the sequences of the functional genes encoding nitrogenase and ribulose-1, 5-bisphosphate carboxylase reveal that all the newly obtained strains can be classified as Azospirillum lipoferum. Yet, unlike A. lipoferum, the isolates do not require biotin and utilize sucrose, inositol, and glycerol for growth. The cell morphology of strain B2 differs from that of the type strain and strains B21 and B22. The results obtained indicate the variability of morphological, physiological, and biochemical properties in closely related Azospirillum strains and suggest the existence of metabolic relationships between methanotrophic bacteria and the representatives of the genus Azospirillum under peat bog conditions.  相似文献   

19.
The prion-like determinant [ISP +] manifests itself as an antisuppressor of certain sup35 mutations. To establish that [ISP +] is indeed a new yeast prion, it is necessary to identify the gene that codes for the protein whose prion form is [ISP +]. Analysis of the transformants obtained by transformation of an [ISP +] strain with an insertion gene library revealed three genes controlling the [ISP +] maintenance: UPF1, UPF2, and SFP1. SFP1 codes for a potentially prionogenic protein, which is enriched in Asn and Gln residues, and is thereby the most likely candidate for the [ISP +] structural gene. UPF1 and UPF2 code for components of nonsense-mediated mRNA decay. The [ISP +] elimination caused by UPF1 and UPF2 inactivation was reversible, and Upf1p and Upf2p were not functionally related to phosphatase Ppz1p, which influences the [ISP +] manifestation. Possible mechanisms sustaining the influence of UPF1 and UPF2 on [ISP +] maintenance are discussed.  相似文献   

20.
Symbiotic seed germination is a critical stage in orchid life histories. Natural selection may act to favor plants that efficiently use mycorrhizal fungi. However, the necessary conditions for natural selection – variation, heritability, and differences in fitness – have not been demonstrated for either orchid or fungus. With the epiphytic orchid Tolumnia variegata as a model system, we ask the following questions: (1) Do seeds from different individuals in a population differ in germination and seedling development in the presence of the same fungi? (2) Do different mycorrhizal fungi (Ceratobasidium spp.) differ in ability to stimulate seed germination and growth in T. variegata? And (3) are the Ceratobasidium isolates that best induce seed germination and seedling development more closely related to each other than to isolates that are less effective? We performed symbiotic seed germination experiments in vitro. The experiments were done using mycorrhizal fungi isolated from T. variegata; relationships among the fungi were inferred from nuclear ribosomal ITS sequences. We found significant variation for both symbiotic germination and seedling growth among biparental seed crops obtained from a population of T. variegata plants. Differences among Ceratobasidium fungi in seed germination were significant. The fungi that induced highest seed germination and seedling development belonged to two of four clades of Ceratobasidium. The two experiments show that there is potential for natural selection to act on orchid–fungus relationships. Given that orchids vary in performance, and that mycorrhizal fungi are not geographically distributed homogeneously, mycorrhizae may affect population size, distribution and evolution of orchids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号