首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the previously characterized egg-yolk biotin-binding protein (BBP-I), we have discovered another BBP (BBP-II) in the plasma and yolk from laying hens. BBP-I is stable to 65 degrees C, whereas BBP-II is stable to 45 degrees C. Both proteins are normally saturated with biotin and together they account for most, if not all, of the biotin in hen plasma and yolk, except in hens fed excessive amounts of biotin (greater than 1 mg of biotin/kg of feed). The maximal production of BBP-I is attained at lower levels of dietary biotin (approximately 50 micrograms/kg) than for BBP-II (approximately 250 micrograms/kg); however, the maximal production of BBP-II is severalfold greater than for BBP-I. Consequently, as dietary biotin increases, the ratio of BBP-II to BBP-I increases and becomes constant at dietary intakes of biotin above 250 micrograms/kg. The observation that the amounts of these proteins are limited by biotin in the normal dietary range (less than 250 micrograms/kg) suggests that biotin is required for the synthesis, secretion or stability of these proteins. Although both plasma vitamin-protein complexes are transported to the oocyte and concentrated in the yolk, BBP-II is transferred more efficiently. Thus biotin deposition in the yolk is a function of the amounts and relative concentrations of the two proteins. Dietary biotin above 250 micrograms/kg exceeds the transport capacity of BBP-I and BBP-II in the plasma; however, unbound biotin does not accumulate. Rather it is efficiently scavenged by avidin in the oviduct and transferred to the egg albumen. Only when avidin becomes saturated at high dietary intake does free or weakly bound biotin accumulate in plasma and yolk. The synthesis of avidin is independent of dietary biotin. Small amounts of BBPs with the heat-stability of avidin or BBP-I respectively are present in the plasma of adult males or immature chickens. BBP-II, the major BBP in the plasma and yolk of laying hens, was not detected in the plasma of non-laying chickens.  相似文献   

2.
L Bush  T J McGahan    H B White  rd 《The Biochemical journal》1988,256(3):797-805
BBP-II, the major biotin-binding protein from chicken oocytes, was purified 12,000-fold with a 22% yield. The purification procedure includes butan-1-ol extraction of yolk lipids, phosphocellulose chromatography of the water-soluble proteins, DEAE-cellulose chromatography at pH 7.4 and hydroxyapatite column chromatography. Final purification was obtained by using a second DEAE-cellulose column chromatography at pH 6.0. BBP-I activity separated from BBP-II activity during elution from the first DEAE-cellulose column. Purified BBP-II was homogeneous on both polyacrylamide-gel electrophoresis and SDS/polyacrylamide-gel electrophoresis under conditions that would detect a 1% impurity. The subunit Mr determined from SDS/polyacrylamide-gel electrophoresis was 18,200 (72,600 for tetramer), which compares favourably with an Mr value of 17,300 (69,100) calculated from the amino acid analysis. A single precipitin line formed when rabbit antiserum to the protein was directed against a crude chicken egg-yolk sample. BBP-II purified by this procedure lacked carbohydrate and phosphate, was stable indefinitely when frozen, and was quite stable at room temperature. The N-terminal amino acid sequence showed polymorphism at three positions in the first 23 residues and was about 45% identical with the N-terminal 22 residues of avidin. Antiserum to BBP-II cross-reacted with BBP-I and similar proteins in the yolk of eggs from various birds and alligator as judged by immunodiffusion and enzyme-linked immunosorbent assays. No cross-reaction was observed with chicken egg-white by either of these methods.  相似文献   

3.
1. The unequal distribution of biotin and biotin-binding proteins between the yolk and albumen of freshly laid chicken eggs provides the potential for time-dependent redistribution of biotin that could affect egg quality, biotin availability, and hatchability. 2. Avidin-bound biotin was measured in albumen next to the shell and next to the yolk in eggs stored up to 23 days. 3. Biotin bound to biotin-binding proteins (BBP-I and BBP-II) was measured at the center and periphery of yolk from the same eggs. 4. After 11 days of storage, significant amounts of biotin from the yolk began to accumulate in the albumen adjacent to the yolk. 5. This transfer is attributed to a change in the vitelline membrane that permits diffusion of biotin, not BBP-I or BBP-II, out of the yolk. 6. The dynamics of this phenomenon suggest that in addition to its antimicrobial role, avidin may be involved in the utilization of biotin by the chick embryo.  相似文献   

4.
Ku protein, a relatively abundant nuclear protein associated with DNA of mammalian cells, is known to be a heterodimer with subunits of 85 and 72 kDa which binds in vitro to DNA ends and subsequently translocates along the molecule. The functional role played by this protein in the cell, however, remains to be elucidated. We have observed here that Ku protein, purified from cultured monkey cells, is the target of specific endoproteolysis in vitro, by which the 85 kDa subunit is cleaved at a precise site while the 72 kDa subunit remains intact. This cleavage releases an 18 kDa polypeptide and converts Ku protein into a heterodimer composed of the 72 kDa subunit associated with a 69 kDa fragment from the 85 kDa subunit. The proteolyzed form of Ku protein, denoted Ku′, has DNA binding properties similar to those of Ku protein. The proteolytic mechanism, which is inhibited by leupeptin and chymostatin, is extremely sensitive to ionic conditions, in particular to pH, being very active at pH 7.0 and completely inhibited at pH 8.0. In addition, cleavage occurs only when Ku protein is bound to DNA, not free in solution. We suggest that in vivo, such proteolysis might be necessary for Ku protein function at some stage of the cell cycle. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Two alpha subunits of GTP-binding proteins were purified from bovine spleen membranes. Both proteins were ADP-ribosylated by pertussis toxin in the presence of beta gamma subunits. The major protein had a molecular mass of 40 kDa and its immunological reactivity and fragmentation pattern by limited proteolysis were identical with those of the alpha subunit of Gi2. The minor protein had a molecular mass of 41 kDa and its partial amino acid sequences completely matched with those predicted from human and rat Gi3 alpha cDNAs.  相似文献   

6.
The major outer membrane protein of Legionella pneumophila exhibits an apparent molecular mass of 100 kDa. Previous studies revealed the oligomer to be composed of 28- and 31-kDa subunits; the latter subunit is covalently bound to peptidoglycan. These proteins exhibit cross-reactivity with polyclonal anti-31-kDa protein serum. In this study, we present evidence to confirm that the 31-kDa subunit is a 28-kDa subunit containing a bound fragment of peptidoglycan. Peptide maps of purified proteins were generated following cyanogen bromide cleavage or proteolysis with staphylococcal V8 protease. A comparison of the banding patterns resulting from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a common pattern. Selected peptide fragments were sequenced on a gas phase microsequencer, and the sequence was compared with the sequence obtained for the 28-kDa protein. While the amino terminus of the 31-kDa protein was blocked, peptide fragments generated by cyanogen bromide treatment exhibited a sequence identical to that of the amino terminus of the 28-kDa protein, but beginning at amino acid four (glycine), which is preceded by methionine at the third position. This sequence, (Gly-Thr-Met)-Gly-Pro-Val-Trp-Thr-Pro-Gly-Asn ... , confirms that these proteins have a common amino terminus. An oligonucleotide synthesized from the codons of the common N-terminal amino acid sequence was used to establish by Southern and Northern (RNA) blot analyses that a single gene coded for both proteins. With regard to the putative porin structure, we have identified two major bands at 70 kDa and at approximately 120 kDa by nonreducing SDS-PAGE. The former may represent the typical trimeric motif, while the latter may represent either a double trimer or an aggregate. Analysis of these two forms by two-dimensional SDS-PAGE (first dimensions, nonreducing; second dimensions, reducing) established that both were composed of 31- and 28-kDa subunits cross-linked via interchain disulfide bonds. These studies confirm that the novel L. pneumophila major outer protein is covalently bound to peptidoglycan via a modified 28-kDa subunit (31-kDa anchor protein) and cross-linked to other 28-kDa subunits via interchain disulfide bonds.  相似文献   

7.
Drosophila acetylcholinesterase (EC 3.1.1.7) is a 150-kDa glycoprotein anchored in plasmic membranes via a glycolipid. It is composed of two active subunits which are themselves made of two noncovalently linked polypeptides of 18 and 55 kDa resulting from the proteolysis of a single precursor of 75 kDa. Active Drosophila acetylcholinesterase can be expressed in Xenopus oocytes as an excreted protein. We have identified some of the amino acids essential in post-translational modifications of the protein by site-directed mutagenesis and expression of mutants in this system. The intersubunit disulfide bond involves cysteine at position 615. Cleavage of the 75-kDa precursor, as observed in Drosophila, originates from a hydrophilic peptide (in position 148 to 180) which does not exist in cholinesterase sequences from vertebrates. This cleavage is associated with excretion out of the cell. Drosophila acetylcholinesterase exhibits four effective sites of asparagine-linked glycosylation in positions 126, 174, 331, and 531. We show that glycosylations and dimerization protect the protein against proteolytic digestion. In contrast, none of these post-translational modifications significantly affects the activity of acetylcholinesterase or affinity for its substrate.  相似文献   

8.
A multifunctional masquerade-like protein has been isolated, purified, and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. It was isolated by its Escherichia coli binding property, and it binds to formaldehyde-treated Gram-negative bacteria as well as to yeast, Saccharomyces cerevisiae, whereas it does not bind to formaldehyde-fixed Gram-positive bacteria. The intact masquerade (mas)-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme. The 134 kDa of the processed protein yields four subunits of 65, 47, 33, and 29 kDa, and the 129-kDa protein results in four subunits of 63, 47, 33, and 29 kDa in 10% SDS-PAGE under reducing conditions. The 33-kDa protein could be purified by immunoaffinity chromatography using an Ab to the C-terminal part of the mas-like protein. This subunit of the mas-like protein has cell adhesion activity, whereas the two intact proteins, 134 and 129 kDa, have binding activity to LPSs, glucans, Gram-negative bacteria, and yeast. E. coli coated with the mas-like protein were more rapidly cleared in crayfish than only E. coli, suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein suggest that it plays a role as an innate immune protein.  相似文献   

9.
Three polycation-stimulated (PCSH-, PCSM- and PCSL-) protein phosphatases are characterized by distinct specificities and regulatory properties. The properties of the catalytic subunits obtained from the 3 basic types of PCS phosphatases are apparently identical. The 35 kDa catalytic subunits are insensitive to inhibitor-1 and modulator protein and in contrast with the holoenzymes are less sensitive to stimulation by protamine, displaying a similar degree of stimulation and an identical concentration optimum; preincubation with polycations also results in a time-dependent deactivation. The phosphorylase phosphatase activity of the three catalytic subunits is stimulated to a similar extent by low but comparable concentrations of detergents, but not by metal ions. Upon limited proteolysis by trypsin the basal, but to a lesser extent the polycation-stimulated activity of the holoenzymes and the catalytic subunits is decreased.  相似文献   

10.
In oviparous species, proteins and lipids are found in the vitellus forming lipoproteins called lipovitellins. They are an important energy source for embryos development and larvae growth and survival. We have previously isolated and partially characterized the sole egg cytosolic lipovitellin from the freshwater shrimp Macrobrachium borellii. It is a native protein of 440 kDa, composed of two subunits of 94 and 112 kDa. In the present work we studied size, shape and structure of M. borellii lipovitellin using electron microscopy, crosslinking reagents, MALDI-TOF, circular dichroism, fluorescence and partial proteolysis. The results showed that lipovitellin has a quasi spherical morphology with an estimated diameter of 18.5 ± 3.5 nm. It appears to be composed of two subunits of 94 kDa, and one of 112 kDa. The larger subunit is more susceptible to trypsinolysis, indicating that it is less compactly folded and/or more exposed to the aqueous medium than the 94 kDa subunits. The hetero-trimer is held together by non-covalent interactions. Peptide mass fingerprinting by MALDI-TOF, produced 42 polypeptides matching to a vitellogenin of a related species (Macrobrachium rosenbergii). Circular dichroism indicated that this protein contains 35.7% α-helix, 16.6% β-sheet and 20% turns. Tryptophan fluorescence emission, at a maximum of 334 nm, indicated that the environment polarity of these aromatic residues is similar to that of other crustacean lipoproteins.  相似文献   

11.
Photosystem I (PSI) complex of Anabaena variabilis ATCC 29413 consists of at least 11 subunits, 9 of which are resolved by high resolution gel electrophoresis. N-terminal amino acid sequences of the four subunits with molecular masses of 6.8, 5.2, 4.8 and 3.5 kDa were determined. Based on the sequence homology, the 3.5 kDa subunit was revealed to correspond to PSI-I (the gene product of psaI), which had so far been detected only in higher plant PSI complexes. The 6.8 kDa protein and 4.8 kDa protein were identified as gene products of psaK and psaJ, respectively. The 5.2 kDa protein was homologous to a 4.8 kDa subunit of PSI of the thermophilic cyanobacterium Synechococcus vulcanus, suggesting that this protein is a component of PSI in cyanobacteria.  相似文献   

12.
Marín-Navarro J  Moreno J 《Biochemistry》2003,42(50):14930-14938
The proteolytic susceptibility of the native CO(2)-fixing photosynthetic enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39, Rubisco) has been shown to increase in vitro after oxidative treatments that affect cysteine thiols. A limited incubation of oxidized (pretreated with the disulfide cystamine) Rubisco from Chlamydomonas reinhardtii with subtilisin or proteinase K generated fragments of molecular mass about 53 kDa (band I in SDS-PAGE) and 47 kDa (band II) derived from the large subunit (55 kDa) of the enzyme. In contrast, proteolysis of the reduced Rubisco (pretreated with the free thiol cysteamine) produced only the 53 kDa band. The same fragmentation pattern was reproduced with Rubiscos from other algae and higher plants, as well as with other chemical modifications of protein cysteines. N-terminal sequencing of the fragments showed that band I arised from clipping the unstructured N-terminal stretch of the large subunit up to Lys18. Band II was generated by a cleavage close to Val69. The increased susceptibility of the oxidized form resulted from proteases gaining access to a loop (from Ser61 to Thr68) located between stretches of secondary structure that form the N-terminal domain. Native electrophoresis and kinetic analysis of fragment accumulation during subtilisin digestion demonstrated that subunit dissociation was induced by the proteolytic processing at the Ser61-Thr68 loop, which is characteristic of the oxidized Rubisco. Holoenzyme dissasembly was readily followed by the full degradation of the released subunits. In contrast, the limited processing to band I observed with the reduced enzyme did not compromise the quaternary structure of the Rubisco hexadecamer, thus preventing further proteolysis.  相似文献   

13.
The structure and supramolecular assembly of the soybean photosystem 1 (PS 1) chlorophyll a/b-binding antenna (LHC 1) was examined. We identified the subunit composition of LHC 1 in soybean and followed the accumulation of individual subunits during light-induced assembly. We observed four LHC 1 subunits, at 23, 22, 21 and 20.5 kDa, obtained partial sequence information by amino-terminal sequence analysis, and classified the 20.5, 22, and 21 kDa subunits as being encoded by type I, II, and IV chlorophyll a/b binding protein genes, respectively. Antisera against LHC 1 subunits were used to follow the accumulation of individual subunits during the light-initiated transition from etioplast to chloroplast. Several points are noteworthy. First, monospecific antibody against the 22 kDa subunit decorated a 25 kDa peptide in etiolated tissue, which declined during maturation. This decline correlated with the light-induced appearance of mature 22 kDa peptide, suggesting a precursor/product relationship. Second, the same antibody identified a 22 kDa protein in mature corn, but not a larger band in etiolated corn, suggesting that LHC 1 accumulation is regulated differently between species before the onset of chlorophyll biosynthesis. Third, the mature 22 kDa subunit appeared somewhat later than the other LHC 1 peptides during greening, implying that this subunit is less intimately associated with the PS1 core than are the subunits appearing earlier in development.  相似文献   

14.
In addition to protease La (the lon gene product), Escherichia coli contains another ATP-dependent protease, Ti. This enzyme (approximately 340 kDa) is composed of two components, both of which are required for proteolysis. Both have been purified to homogeneity by conventional procedures using [3H]casein as the substrate. The ATP-stabilized component, A, has a subunit molecular weight of 80,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate, but it behaves as a dimer (140 kDa) upon gel filtration. Component P, which is relatively heat stable, is inactivated by diisopropyl fluorophosphate and can be labeled with [3H] diisopropyl fluorophosphate. It has a subunit size of 23 kDa, but the isolated component behaves as a complex (260 kDa) of 10-12 subunits. The isoelectric point of component A is 7.0 and that of P is 8.2, and their amino acid compositions differ considerably. The purified enzyme has an ATPase activity that is stimulated 2-4-fold by casein and other protein substrates but not by nonhydrolyzed proteins. Component A also shows ATPase activity which can be stimulated by casein. Addition of component P (which lacks ATPase activity) inhibits basal ATP hydrolysis by A and makes this ATPase more responsive to casein. Although component P contains the serine active site for proteolysis, it shows no proteolytic activity in the absence of component A, Mg2+, and ATP or dATP. Other nucleoside triphosphates are not hydrolyzed and do not support proteolysis. Protease Ti has a Km for ATP of 210 microM for hydrolysis of both casein and ATP. Casein increases the Vmax for ATP without affecting the Km. A Mg2+ concentration of 5 mM is necessary for half-maximal rates of ATP and casein hydrolysis. Ca2+ and Mn2+ partially support these activities. Thus, protease Ti shares many unusual properties with protease La (e.g. coupled ATP and protein hydrolysis and protein-activated ATPase), but these functions in protease Ti are associated with distinct subunits that modify each other's activities.  相似文献   

15.
The terminal DNA restriction fragments (PstI-D and -B) of Pseudomonas aeruginosa bacteriophage D3 were ligated, cloned, and sequenced. Of the nine open reading frames in this 8.3-kb fragment, four were identified as encoding large-subunit terminase, portal, ClpP protease, and major head proteins. The portal and capsid proteins showed significant homology with proteins of the lambdoid coliphage HK97. Phage D3 was purified by CsCl equilibrium gradient centrifugation (rho = 1.533 g/ml), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed six proteins with molecular masses of 186, 91, 79, 70, 45, and 32 kDa. The pattern was unusual, since a major band corresponding to the expected head protein (43 kDa) was missing and a significant amount of the protein was retained in the stacking gel. The amino terminus of the 186-kDa protein was sequenced, revealing that the D3 head is composed of cross-linked 31-kDa protein subunits, resulting from the proteolysis of the 43-kDa precursor. This is identical to the situation observed with coliphage HK97.  相似文献   

16.
The degradation of the rß-conglycinins, the secondmost abundant seed storage protein complex of Glycine max, thatoccurs as a result of proteolysis during seed germination andearly seedling growth, was investigated. The rß-conglycininsof soybean are composed of a semi-random association of threedifferent subunits, a', a, and rß, in a trimeric complexwith a sedimentation coefficient of 7S. Western immunoblot analysisof the degradation products showed that proteolytic cleavageyields specific fragments as has been shown in other legumes.The proteolytic fragments produced in G. max, cv. Provar aredesignated here as FPI (62 kDa), FPII (57 kDa), FPIII (52 kDa),FPIV (31 kDa), and FPV (27 kDa). Comparison of the fragmentsfrom G. max cv. Keburi, a variant lacking the a' subunit, withthose from G. max cv. Provar showed that the FPIV fragment isderived from the a' subunit. All fragments stained with periodicacid-Schiff's reagent, indicating that exhaustive deglycosylationof these subunits is not a prerequisite for cleavage. All ofthe fragments detected in these experiments sediment in linearsucrose density gradients with sedimentation coefficients ofabout 7S, identical to that of intact rß-conglycinin.These results suggest that as proteolysis of the rß-conglycininsoccur during germination and early growth, the cleavage productsare retained within the holoprotein structure. Further proteolysiscleaves the polypeptides into smaller fragments leading to thedisintegration of the 7S storage protein structure.  相似文献   

17.
Calcium/calmodulin-dependent multifunctional protein kinases, extensively purified from rat brain (with apparent molecular mass 640 kDa), rabbit liver (300 kDa) and rabbit skeletal muscle (700 kDa), were analysed for their structural, immunological, and enzymatic properties. The immunological cross-reactivity with affinity-purified polyclonal antibodies to the 50-kDa catalytic subunit of the brain calmodulin-dependent protein kinase confirmed the presence of common antigenic determinants in all subunits of the protein kinases. One-dimensional phosphopeptide patterns, obtained by digestion of the autophosphorylated protein kinases with S. aureus V8 protease, and two-dimensional fingerprints of the 125I-labelled proteins digested with a combination of trypsin and chymotrypsin, revealed a close similarity between the two subunits (51 kDa and 53 kDa) of the liver enzyme. Similar identity was observed between the 56-kDa and/or 58-kDa polypeptides of the skeletal muscle calmodulin-dependent protein kinase. The data suggest that the subunits of the liver and muscle protein kinases may be derived by partial proteolysis or by autophosphorylation. The peptide patterns for the 50-kDa and 60-kDa subunits of the brain enzyme confirmed that the two catalytic subunits represented distinct protein products. The comparison of the phosphopeptide maps and the two-dimensional peptide fingerprints, indicated considerable structural homology among the 50-kDa and 60-kDa subunits of the brain calmodulin-dependent protein kinase and the liver and muscle polypeptides. However, a significant number of unique peptides in the liver 51-kDa subunit, skeletal muscle 56-kDa, and the brain 50-kDa and 60-kDa polypeptides were observed and suggest the existence of isoenzyme forms. All calmodulin-dependent protein kinases rapidly phosphorylated synapsin I with a stoichiometry of 3-5 mol phosphate/mol protein. The two-dimensional separation of phosphopeptides obtained by tryptic/chymotryptic digestion of 32P-labelled synapsin I indicated that the same peptides were phosphorylated by all the calmodulin-dependent protein kinases. Such data represent the first structural and immunological comparison of the liver calmodulin-dependent protein kinase with the enzymes isolated from brain and skeletal muscle. The findings indicate the presence of a family of highly conserved calmodulin-dependent multifunctional protein kinases, with similar structural, immunological and enzymatic properties. The individual catalytic subunits appear to represent the expression of distinct protein products or isoenzymes which are selectively expressed in mammalian tissues.  相似文献   

18.
We have isolated, after exhaustive detergent treatments, a 33 kDa tau-related protein isolated from paired helical filaments from Alzheimer's disease patient brains. The N-terminal sequence of the 33 kDa protein begins at residue 71 of the sequence described for human fetal tau protein. This truncated form of tau is not the consequence of the translation of a tau RNA lacking a region at its 5' end, as measured by primer extension analyses, suggesting that the 33 kDa protein must be generated by proteolysis of previously synthesized tau. This tau-related protein has only one blocked cysteine residue and also has a decreased tubulin binding capacity as compared with that of tau protein.  相似文献   

19.
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.  相似文献   

20.
There is little information on the egg proteins of gastropod mollusks. Here we focus on PV2, a novel neurotoxin from snail eggs, studying its size, shape, structure, and stability, using small angle X-ray scattering (SAXS), absorption and fluorescence spectroscopy, circular dichroism, electron microscopy and partial proteolysis. Results indicate that PV2 is a compact and well folded oligomer of 130 × 44 Å. It is an octamer of four 98 kDa heterodimers composed of 67 and 31 kDa subunits. Subunits are held together by disulfide bonds. Dimers are assembled into native PV2 by non-covalent forces. The larger subunit is more susceptible to proteolysis, indicating it is less compactly folded and/or more exposed. Quenching of tryptophan fluorescence showed a single class of tryptophyl side chains occluded in hydrophobic regions. Native structure shows loss of secondary structure (α+β) at 6 M urea or 60–70 °C; the effects on the quaternary structure suggest an unfolding without disassembling of the protein. The 3D model of PV2 presented here is the first for an egg proteinaceous neurotoxin in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号