首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The hepatocyte nuclear factor (HNF)4alpha, a member of the nuclear receptor superfamily, regulates genes that play a critical role in embryogenesis and metabolism. Recent studies have shown that mutations in the human HNF4alpha gene cause a rare form of type 2 diabetes, maturity onset diabetes of the young (MODY1). To investigate the properties of these naturally occurring HNF4alpha mutations we analysed five MODY1 mutations (R154X, R127W, V255M, Q268X and E276Q) and one other mutation (D69A), which we found in HepG2 hepatoma cells. Activation of reporter genes in transfection assays and DNA binding studies showed that the MODY1-associated mutations result in a variable reduction in function, whereas the D69A mutation showed an increased activity on some promoters. None of the MODY mutants acted in a dominant negative manner, thus excluding inactivation of the wild-type factor as a critical event in MODY development. A MODY3-associated mutation in the HNF1alpha gene, a well-known target gene of HNF4alpha, results in a dramatic loss of the HNF4 binding site in the promoter, indicating that mutations in the HNF4alpha gene might cause MODY through impaired HNF1alpha gene function. Based on these data we propose a two-hit model for MODY development.  相似文献   

3.
The liver is exposed to a wide variety of toxic agents, many of which damage DNA and result in increased levels of the tumour suppressor protein p53. We have previously shown that p53 inhibits the transactivation function of HNF (hepatocyte nuclear factor) 4alpha1, a nuclear receptor known to be critical for early development and liver differentiation. In the present study we demonstrate that p53 also down-regulates expression of the human HNF4alpha gene via the proximal P1 promoter. Overexpression of wild-type p53 down-regulated endogenous levels of both HNF4alpha protein and mRNA in Hep3B cells. This decrease was also observed when HepG2 cells were exposed to UV irradiation or doxorubicin, both of which increased endogenous p53 protein levels. Ectopically expressed p53, but not a mutant p53 defective in DNA binding (R249S), down-regulated HNF4alpha P1 promoter activity. Chromatin immunoprecipitation also showed that endogenous p53 bound the HNF4alpha P1 promoter in vivo after doxorubicin treatment. The mechanism by which p53 down-regulates the P1 promoter appears to be multifaceted. The down-regulation was partially recovered by inhibition of HDAC activity and appears to involve the positive regulator HNF6alpha. p53 bound HNF6alpha in vivo and in vitro and prevented HNF6alpha from binding DNA in vitro. p53 also repressed stimulation of the P1 promoter by HNF6alpha in vivo. However, since the R249S p53 mutant also bound HNF6alpha, binding HNF6alpha is apparently not sufficient for the repression. Implications of the p53-mediated repression of HNF4alpha expression in response to cellular stress are discussed.  相似文献   

4.
5.
Hepatocyte nuclear factor 4alpha (HNF4alpha) (NR2A1), an orphan member of the nuclear receptor superfamily, binds DNA exclusively as a homodimer even though it is very similar in amino acid sequence to retinoid X receptor alpha (RXRalpha), which heterodimerizes readily with other receptors. Here, experimental analysis of residues involved in protein dimerization and studies on a reported ligand for HNF4alpha are combined with a structural model of the HNF4alpha ligand-binding domain (LBD) (residues 137 to 384). When K300 (in helix 9) and E327 (in helix 10) of HNF4alpha1 were converted to the analogous residues in RXRalpha (E390 and K417, respectively) the resulting construct did not heterodimerize with the wild-type HNF4alpha, although it was still able to form homodimers and bind DNA. Furthermore, the double mutant did not heterodimerize with RXR or RAR but was still able to dimerize in solution with an HNF4alpha construct truncated at amino acid residue 268. This suggests that the charge compatibility between helices 9 and 10 is necessary, but not sufficient, to determine dimerization partners, and that additional residues in the HNF4alpha LBD are also important in dimerization. The structural model of the HNF4alpha LBD and an amino acid sequence alignment of helices 9 and 10 in various HNF4 and other receptor genes indicates that a K(X)(26)E motif can be used to identify HNF4 genes from other organisms and that a (E/D(X)(26-29)K/R) motif can be used to predict heterodimerization of many, but not all, receptors with RXR. In vitro analysis of another HNF4alpha mutant construct indicates that helix 10 also plays a structural role in the conformational integrity of HNF4alpha. The structural model and experimental analysis indicate that fatty acyl CoA thioesters, the proposed HNF4alpha ligands, are not good candidates for a traditional ligand for HNF4alpha. Finally, these results provide insight into the mechanism of action of naturally occurring mutations in the human HNF4alpha gene found in patients with maturity onset diabetes of the young 1 (MODY1).  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
To understand the mechanisms governing the regulation of nuclear receptor (NR) function, we compared the parameters of activation and repression of two isoforms of the orphan receptor hepatocyte nuclear factor (HNF) 4alpha. HNF4alpha7 and HNF4alpha1 differ only in their N-terminal domains, and their expression in the liver is regulated developmentally. We show that the N-terminal activation function (AF)-1 of HNF4alpha1 possesses significant activity that can be enhanced through interaction with glucocorticoid receptor-interacting protein 1 (GRIP-1) and cAMP response element-binding protein-binding protein (CBP). In striking contrast, HNF4alpha7 possesses no measurable AF-1, implying major functional differences between the isoforms. Indeed, although HNF4alpha1 and HNF4alpha7 are able to interact via AF-2 with GRIP-1, p300, and silencing mediator for retinoid and thyroid receptors (SMRT), only HNF4alpha1 interacts in a synergistic fashion with GRIP-1 and p300. Although both isoforms interact physically and functionally with SMRT, the repression of HNF4alpha7 is less robust than that of HNF4alpha1, which may be caused by an increased ability of the latter to recruit histone deacetylase (HDAC) activity to target promoters. Moreover, association of SMRT with HDACs enhanced recruitment of HNF4alpha1 but not of HNF4alpha7. These observations suggest that NR isoform-specific association with SMRT could affect activity of the SMRT complex, implying that selection of HDAC partners is a novel point of regulation for NR activity. Possible physiological consequences of the multiple interactions with these coregulators are discussed.  相似文献   

15.
HNF4alpha (hepatocyte nuclear factor 4alpha) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic beta-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4alpha is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4alpha recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 angstroms crystal structure of human HNF4alpha DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1alpha, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4alpha molecular function can cause significant effects in afflicted MODY patients.  相似文献   

16.
17.
18.
19.
BACKGROUND: Hepatocyte nuclear factor-4alpha (HNF4alpha; NR2A1) is an orphan member of the nuclear receptor superfamily involved in various processes that could influence endoderm development, glucose and lipid metabolism. A loss-of-function mutation in human HNF4alpha causes one form of diabetes mellitus called maturity-onset diabetes of the young type 1 (MODY1) which is characterized in part by a diminished insulin secretory response to glucose. The expression of HNF4alpha in a variety of tissues has been examined predominantly at the mRNA level, and there is little information regarding the cellular localization of the endogenous HNF4alpha protein, due, in part, to the limited availability of human HNF4alpha-specific antibodies. RESULTS: Monoclonal antibodies have been produced using baculovirus particles displaying gp64-HNF4alpha fusion proteins as the immunizing agent. The mouse anti-human HNF4alpha monoclonal antibody (K9218) generated against human HNF4alpha1/alpha2/alpha3 amino acids 3-49 was shown to recognize not only the transfected and expressed P1 promoter-driven HNF4alpha proteins, but also endogenous proteins. Western blot analysis with whole cell extracts from Hep G2, Huh7 and Caco-2 showed the expression of HNF4alpha protein, but HEK293 showed no expression of HNF4alpha protein. Nuclear-specific localization of the HNF4alpha protein was observed in the hepatocytes of liver cells, proximal tubular epithelial cells of kidney, and mucosal epithelial cells of small intestine and colon, but no HNF4alpha protein was detected in the stomach, pancreas, glomerulus, and distal and collecting tubular epithelial cells of kidney. The same tissue distribution of HNF4alpha protein was observed in humans and rats. Electron microscopic immunohistochemistry showed a chromatin-like localization of HNF4alpha in the liver and kidney. As in the immunohistochemical investigation using K9218, HNF4alpha mRNA was found to be localized primarily to liver, kidney, small intestine and colon by RT-PCR and GeneChip analysis. CONCLUSION: These results suggest that this method has the potential to produce valuable antibodies without the need for a protein purification step. Immunohistochemical studies indicate the tissue and subcellular specific localization of HNF4alpha and demonstrate the utility of K9218 for the detection of P1 promoter-driven HNF4alpha isoforms in humans and in several other mammalian species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号