首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25–50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker–trait association mapping. This new association population has the potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting the rich diversity present in rice germplasm.  相似文献   

2.
3.
Measuring genetic diversity in populations of a crop species is very important for understanding the genetic structure of and subsequently improving the crop species by genetic manipulation. Single-nucleotide amplified polymorphisms (SNAPs) among and within maize populations of waxy, dent, and sweet corns at 25 single-nucleotide polymorphism (SNP) sites in 6 kernel starch-synthesis genes (sh2, bt2, su1, ae1, wx1, and sh1) were determined. Because of the intensive selection of some favorable alleles in starch-synthesis genes during the breeding process, and the resultant strong linkage disequilibrium (LD), the number of haplotypes in each population was far less than expected. Subsequent phenetic clustering analysis with the SNAPs indicated that the dent, waxy, and sweet corns formed distinct subclusters, except in a few incidences. LD was surveyed among SNAPs of intragenic, intergenic, and intrachromosomal SNPs in whole and subpopulations, which revealed that some SNAPs showed high LD with many other SNAPs, but some SNAPs showed low or no significant LD with others, depending on the subpopulation, indicating that these starch genes have undergone different selection in each subpopulation during the breeding process. Because the starch synthesis genes used in this study are important in maize breeding, the genetic diversity, LD, and accessions having rare SNAP alleles might be valuable in maize improvement programs.  相似文献   

4.
Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.   总被引:3,自引:0,他引:3  
Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.  相似文献   

5.
The identification of molecular markers associated with economic and quality traits will help improve breeding for new apple (Malus × domestica Borkh.) cultivars. Tools such as the 8K apple SNP array developed by the RosBREED consortium allow for high-throughput genotyping of SNP polymorphisms within collections. However, genetic characterization and the identification of population stratification and kinship within germplasm collections is a fundamental prerequisite for identifying robust marker–trait associations. In this study, a collection of apple germplasm originally developed for plant architectural studies and consisting of both non-commercial/local and elite accessions was genotyped using the 8K apple SNP array to identify cryptic relationships between accessions, to analyze population structure and to calculate the linkage disequilibrium (LD). A total of nine pairs of synonyms and several triploids accessions were identified within the 130 accessions genotyped. In addition, most of the known parent-child relations were confirmed, and several putative, previously unknown parent-child relations were identified among the local accessions. No clear subgroups could be identified although some separation between local and elite accessions was evident. The study of LD showed a rapid decay in our collection, indicating that a larger number of SNPs is necessary to perform whole genome association mapping. Finally, an association mapping effort for architectural traits was carried out on a small number of accessions to estimate the feasibility of this approach.  相似文献   

6.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

7.
RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses were carried out to clarify the phylogenetic relationships among A-genome species of rice. In total, 12 cultivars of Oryza sativa (4 Japonica, 3 Javanica and 5 Indica), one cultivar of O. glaberrima, and 17 wild accessions (12 O. rufipogon, 2 O. glumaepatula, 1 O. longistaminata, 1 O. meridionalis and 1 O. barthii) were used. Their banding patterns were scored and compared to evaluate the similarity between accessions. Genetic differentiation within and between taxa was examined based on the average similarity indices. Except for chloroplast SSLP analysis, the average similarities were higher within O. sativa than within O. rufipogon, and O. sativa Indica had greater intrasubspecific variation than Japonica and Javanica. Comparisons between cultivated and wild species showed that O. sativa was closely related to O. rufipogon, while O. glaberrima was closely related to O. barthii. This indicated that two cultivated species, O. sativa and O. glaberrima, originated from O. rufipogon and O. barthii, respectively. Domestication of O. sativa seemed to be diphyletic, since strong similarity was observed between O. sativa Japonica-Javanica and O. rufipogon from China and between O. sativa Indica and O. rufipogon from tropical Asia. In addition, dendrograms for RAPD, RFLP, and nuclear and chloroplast SSLP analyses were constructed to reveal the overall genetic relationships among A-genome species. In all analyses, O. sativa and O. glaberrima formed groups with O. rufipogon and O. barthii, respectively. However, their manners of clustering with other wild species were not the same. The results of RAPD and RFLP analyses indicate that O. glumaepatula was relatively close to the groups of O. sativa and O. glaberrima whereas O. longistaminata and O. meridionalis were highly differentiated from other A-genome species. On the other hand, clear interspecific relationships were not obtained by nuclear or chloroplast SSLP analyses.  相似文献   

8.
Melon has tremendous fruit diversity, the product of complex interactions of consumer preferences in different countries and a wide range of agro-climatic zones. Understanding footprints of divergence underlying formation of various morphotypes is important for developing sustainable and high-quality melons. Basic understanding of population structure and linkage disequilibrium (LD) is limited in melon and has lagged behind other crops. Characterization of population structure and LD are essential for carrying out association mapping of quantitative trait loci (QTL) underlying various complex traits. Mapped single-locus microsatellite markers are known to be very valuable for resolving the population structure and 268 such markers were used in the current study to resolve population structure and LD pattern using 87 accessions of melons belonging to Eastern European, Euro-North American and Asian types. A mixed linear model was implemented to detect QTL for various fruit traits. Various levels of QTL with high to moderate stringency were detected for fruit shape, fruit weight, soluble solids, and rind pressure and a majority of them was found to be in agreement with the previously published data, indicating that association mapping can be very useful for melon molecular breeding. Minor discrepancies in the position, strength and the variation explained by the QTL present between the methods of association and recombinant mapping approaches can be bridged if more melon groups and larger sets of accessions are involved in future studies, combined with high-throughput marker panels.  相似文献   

9.
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide polymorphism (SNP) markers in 351 accessions from the whole species range using a matrix-assisted laser desorption/ionization time-of-flight assay, and by sequencing of nine unlinked short genomic regions in a subset of 64 accessions. The observed frequency distribution of SNPs is not consistent with a constant-size neutral model of sequence polymorphism due to an excess of rare polymorphisms. There is evidence for a significant population structure as indicated by differences in genetic diversity between geographic regions. Accessions from Central Asia have a low level of polymorphism and an increased level of genome-wide linkage disequilibrium (LD) relative to accessions from the Iberian Peninsula and Central Europe. Cluster analysis with the structure program grouped Eurasian accessions into K=6 clusters. Accessions from the Iberian Peninsula and from Central Asia constitute distinct populations, whereas Central and Eastern European accessions represent admixed populations in which genomes were reshuffled by historical recombination events. These patterns likely result from a rapid postglacial recolonization of Eurasia from glacial refugial populations. Our analyses suggest that mapping populations for association or LD mapping should be chosen from regional rather than a species-wide sample or identified genetically as sets of individuals with similar average genetic distances. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
The relationship between linkage disequilibrium (LD) and recombination fraction can be used to infer the pattern of genetic variation and evolutionary process in humans and other systems. We described a computational framework to construct a linkage–LD map from commonly used biallelic, single-nucleotide polymorphism (SNP) markers for outcrossing plants by which the decline of LD is visualized with genetic distance. The framework was derived from an open-pollinated (OP) design composed of plants randomly sampled from a natural population and seeds from each sampled plant, enabling simultaneous estimation of the LD in the natural population and recombination fraction due to allelic co-segregation during meiosis. We modified the framework to infer evolutionary pasts of natural populations using those marker types that are segregating in a dominant manner, given their role in creating and maintaining population genetic diversity. A sophisticated two-level EM algorithm was implemented to estimate and retrieve the missing information of segregation characterized by dominant-segregating markers such as single methylation polymorphisms. The model was applied to study the relationship between linkage and LD for a non-model outcrossing species, a gymnosperm species, Torreya grandis, naturally distributed in mountains of the southeastern China. The linkage–LD map constructed from various types of molecular markers opens a powerful gateway for studying the history of plant evolution.  相似文献   

11.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

12.
Li Y  Li Y  Wu S  Han K  Wang Z  Hou W  Zeng Y  Wu R 《Genetics》2007,176(3):1811-1821
Analysis of population structure and organization with DNA-based markers can provide important information regarding the history and evolution of a species. Linkage disequilibrium (LD) analysis based on allelic associations between different loci is emerging as a viable tool to unravel the genetic basis of population differentiation. In this article, we derive the EM algorithm to obtain the maximum-likelihood estimates of the linkage disequilibria between dominant markers, to study the patterns of genetic diversity for a diploid species. The algorithm was expanded to estimate and test linkage disequilibria of different orders among three dominant markers and can be technically extended to manipulate an arbitrary number of dominant markers. The feasibility of the proposed algorithm is validated by an example of population genetic studies of hickory trees, native to southeastern China, using dominant random amplified polymorphic DNA markers. Extensive simulation studies were performed to investigate the statistical properties of this algorithm. The precision of the estimates of linkage disequilibrium between dominant markers was compared with that between codominant markers. Results from simulation studies suggest that three-locus LD analysis displays increased power of LD detection relative to two-locus LD analysis. This algorithm is useful for studying the pattern and amount of genetic variation within and among populations.  相似文献   

13.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

14.
Few studies have investigated genetic differentiation within nonisolate European populations, despite the initiation of large national sample collections such as U.K. Biobank. Here, we used short tandem repeat markers to explore fine-scale genetic structure and to examine the extent of linkage disequilibrium (LD) within national subpopulations. We studied 955 unrelated individuals of local ancestry from nine Scottish rural regions and the urban center of Edinburgh, as well as 96 unrelated individuals from the general U.K. population. Despite little overall differentiation on the basis of allele frequencies, there were clear differences among subpopulations in the extent of pairwise LD, measured between a subset of X-linked markers, that reflected presumed differences in the depths of the underlying genealogies within these subpopulations. Therefore, there are strategic advantages in studying rural subpopulations, in terms of increased power and reduced cost, that are lost by sampling across regions or within urban populations. Similar rural-urban contrasts are likely to exist in many other populations with stable rural subpopulations, which could influence the design of genetic association studies and national biobank data collections.  相似文献   

15.
Mitochondrial DNA and the Y chromosome (ChrY) are both highly informative regarding human evolution, demographic history, and the genetic relationships between extant populations. The major reason for this is that both genomic compartments do not recombine, except for the pseudo-autosomal regions of ChrY, and that typing of haploid markers automatically allows the identification of haplotypes. In terms of its recombination behaviour, the X chromosome (ChrX) falls between autosomes and ChrY. The significance of ChrX in terms of population genetics is partially based on the fact that its haplotypes are easier to determine than those of autosomes. While ChrY and mtDNA each represent a single locus only, with a common evolutionary history of all their constituents, ChrX comprises several regions that may each reflect its own history. Therefore, ChrX studies seem most suitable for distinguishing between subpopulations or for research on regional ethnic structures. The analysis of linkage disequilibrium (LD) is one of the key aspects of population genetics studies of ChrX markers because LD may be an indicator of genetic isolation or of the emergence from a small founder population. Populations with high LD play an important role in the identification of genes involved in the aetiology of multifactorial diseases.  相似文献   

16.
X Chen  D Min  TA Yasir  YG Hu 《PloS one》2012,7(9):e44510
To ascertain genetic diversity, population structure and linkage disequilibrium (LD) among a representative collection of Chinese winter wheat cultivars and lines, 90 winter wheat accessions were analyzed with 269 SSR markers distributed throughout the wheat genome. A total of 1,358 alleles were detected, with 2 to 10 alleles per locus and a mean genetic richness of 5.05. The average genetic diversity index was 0.60, with values ranging from 0.05 to 0.86. Of the three genomes of wheat, ANOVA revealed that the B genome had the highest genetic diversity (0.63) and the D genome the lowest (0.56); significant differences were observed between these two genomes (P<0.01). The 90 Chinese winter wheat accessions could be divided into three subgroups based on STRUCTURE, UPGMA cluster and principal coordinate analyses. The population structure derived from STRUCTURE clustering was positively correlated to some extent with geographic eco-type. LD analysis revealed that there was a shorter LD decay distance in Chinese winter wheat compared with other wheat germplasm collections. The maximum LD decay distance, estimated by curvilinear regression, was 17.4 cM (r(2)>0.1), with a whole genome LD decay distance of approximately 2.2 cM (r(2)>0.1, P<0.001). Evidence from genetic diversity analyses suggest that wheat germplasm from other countries should be introduced into Chinese winter wheat and distant hybridization should be adopted to create new wheat germplasm with increased genetic diversity. The results of this study should provide valuable information for future association mapping using this Chinese winter wheat collection.  相似文献   

17.
Peanut (Arachis hypogaea L.) is one of the most important oilseed and nutritional crops in the world. To efficiently utilize the germplasm collection, a peanut mini-core containing 112 accessions was established in the United States. To determine the population structure and its impact on marker-trait association, this mini-core collection was assessed by genotyping 94 accessions with 81 SSR markers and two functional SNP markers from fatty acid desaturase 2 (FAD2). Seed quality traits (including oil content, fatty acid composition, flavonoids, and resveratrol) were obtained through nuclear magnetic resonance (NMR), gas chromatography (GC), and high-performance liquid chromatography (HPLC) analysis. Genetic diversity and population structure analysis identified four major subpopulations that are related to four botanical varieties. Model comparison with different levels of population structure and kinship control was conducted for each trait and association analyses with the selected models verified that the functional SNP from the FAD2A gene is significantly associated with oleic acid (C18:1), linoleic acid (C18:2), and oleic-to-linoleic (O/L) ratio across this diverse collection. Even though the allele distribution of FAD2A was structured among the four subpopulations, the effect of FAD2A gene remained significant after controlling population structure and had a likelihood-ratio-based R ( 2 ) (R ( LR ) ( 2 ) ) value of 0.05 (oleic acid), 0.09 (linoleic acid), and 0.07 (O/L ratio) because the FAD2A alleles were not completely fixed within subpopulations. Our genetic analysis demonstrated that this peanut mini-core panel is suitable for association mapping. Phenotypic characterization for seed quality traits and association testing of the functional SNP from FAD2A gene provided information for further breeding and genetic research.  相似文献   

18.
Enterocytozoon bieneusi is a widespread parasite with high genetic diversity among hosts. Its natural reservoir remains elusive and data on population structure are available only in isolates from primates. Here we describe a population genetic study of 101 E. bieneusi isolates from pigs using sequence analysis of the ribosomal internal transcribed spacer (ITS) and four mini- and microsatellite markers. The presence of strong linkage disequilibrium (LD) and limited genetic recombination indicated a clonal structure for the population. Bayesian inference of phylogeny, structural analysis, and principal coordinates analysis separated the overall population into three subpopulations (SP3 to SP5) with genetic segregation of the isolates at some geographic level. Comparative analysis showed the differentiation of SP3 to SP5 from the two known E. bieneusi subpopulations (SP1 and SP2) from primates. The placement of a human E. bieneusi isolate in pig subpopulation SP4 supported the zoonotic potential of some E. bieneusi isolates. Network analysis showed directed evolution of SP5 to SP3/SP4 and SP1 to SP2. The high LD and low number of inferred recombination events are consistent with the possibility of host adaptation in SP2, SP3, and SP4. In contrast, the reduced LD and high genetic diversity in SP1 and SP5 might be results of broad host range and adaptation to new host environment. The data provide evidence of the potential occurrence of host adaptation in some of E. bieneusi isolates that belong to the zoonotic ITS Group 1.  相似文献   

19.

Background

The goal of our study was a systematic survey of the molecular diversity in barley genetic resources. To this end 953 cultivated barley accessions originating from all inhabited continents except Australia were genotyped with 48 SSR markers. Molecular diversity was evaluated with routine statistics (allelic richness, gene diversity, allele frequency, heterozygosity and unique alleles), Principal Coordinate Analysis (PCoA), and analysis of genome-wide linkage disequilibrium.

Results

A genotyping database for 953 cultivated barley accessions profiled with 48 SSR markers was established. The PCoA revealed structuring of the barley population with regard to (i) geographical regions and (ii) agronomic traits. Geographic origin contributed most to the observed molecular diversity. Genome-wide linkage disequilibrium (LD) was estimated as squared correlation of allele frequencies (r2). The values of LD for barley were comparable to other plant species (conifers, poplar, maize). The pattern of intrachromosomal LD with distances between the genomic loci ranging from 1 to 150 cM revealed that in barley LD extended up to distances as long as 50 cM with r2 > 0.05, or up to 10 cM with r2 > 0.2. Few loci mapping to different chromosomes showed significant LD with r2 > 0.05. The number of loci in significant LD as well as the pattern of LD were clearly dependent on the population structure. The LD in the homogenous group of 207 European 2-rowed spring barleys compared to the highly structured worldwide barley population was increased in the number of loci pairs with r2 > 0.05 and had higher values of r2, although the percentage of intrachromosomal loci pairs in significant LD based on P < 0.001 was 100% in the whole set of varieties, but only 45% in the subgroup of European 2-rowed spring barleys. The value of LD also varied depending on the polymorphism of the loci selected for genotyping. The 17 most polymorphic loci (PIC > 0.80) provided higher LD values as compared to 19 low polymorphic loci (PIC < 0.73) in both structured (all accessions) and non-structured (European 2-rowed spring varieties) barley populations.

Conclusion

A global population of cultivated barley accessions was highly structured. Clustering highlighted the accessions with the same geographic origin, as well as accessions possessing similar agronomic characters. LD in barley extended up to 50 cM, and was strongly dependent on the population structure. The data on LD were summarized as a genome-wide LD map for barley.
  相似文献   

20.
The genetic diversity, population structure, and linkage disequilibrium (LD) of peaches are greatly important in genome-wide association mapping. In the current study, 104 peach landrace accessions from six Chinese geographical regions were evaluated for fruit and phenological period. The accessions were genotyped with 53 genome-wide simple sequence repeat (SSR) markers. All SSR markers were highly polymorphic across the accessions, and a total of 340 alleles were detected, including 59 private alleles. Of the six regions studied, the northern part of China as well as the middle and lower reaches of the Changjiang River were found to be the most highly diverse genetically. Based on population structure analysis, the peaches were divided into five groups, which well agreed with the geographical distribution. Of the SSR pairs in these accessions, 18.07% (P?<?0.05) were in LD. The mean r 2 value for all intrachromosomal loci pairs was 0.0149, and LD decayed at 6.01?cM. The general linear model was used to calculate the genome-wide marker-trait associations of 10 complex traits. The traits include flesh color around the stone, red pigment in the flesh, flesh texture, flesh adhesion, flesh firmness, fruit weight, chilling requirement, flowering time, ripening time, and fruit development period. These traits were estimated by analyzing the 104 landraces. Many of the associated markers were located in regions where quantitative trait loci (QTLs) were previously identified. Peach association mapping is an effective approach for identifying QTLs and may be an alternative to QTL mapping based on crosses between different lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号