首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lu CT  Mei XG 《Biotechnology letters》2003,25(17):1437-1439
When, on the 15th day of growth, an elicitor from Fusarium solani was added at 40 mg l–1 to Cistanche deserticola cell suspension cultures, the contents of echinacoside, acteoside and total phenylethanoid glycosides (PeGs) in cultured cells all increased over the next 27 d by over 100% to 15 mg g–1 dry wt, 9 mg g–1 dry wt and 57 mg g–1 dry wt, respectively. The final biomass (1.3 mg dry wt ml–1) was not affected.  相似文献   

2.
Hairy roots of Rauvolfia micrantha were induced from hypocotyl explants of 2–3 weeks old aseptic seedlings using Agrobacterium rhizogenes ATCC 15834. Hairy roots grown in half-strength Murashige & Skoog (MS) medium with 0.2 mg indole 3-butyric acid l–1 and 0.1 mg -naphthaleneacetic acid l–1 produced more ajmaline (0.01 mg g–1 dry wt) and ajmalicine (0.006 mg g–1 dry wt) than roots grown in auxin-free medium. Ajmaline (0.003 mg g–1 dry wt) and ajmalicine (0.0007 mg g–1 dry wt) were also produced in normal root cultures. This is the first report of production of ajmaline and ajmalicine in hairy root cultures of Rauvolfia micrantha.  相似文献   

3.
The time-dependence of Mn accumulation was confirmed in potato foliage (Solanum tuberosum. L.cv. Norland) grown in solution culture. Older leaves grown at 0.61 mM Mn had substantially higher Mn concentrations than younger leaves and stem samples. Levels of Mn in older leaves increased steadily from 4000 µg g–1 at one week to 8–10,000 µg g–1 at 6 weeks, but were relatively constant in the emerging leaves. Even foliage grown at low Mn levels (0.01 mM Mn) had 4 fold gradients in Mn concentration from younger (40 µg g–1) to older leaves (180 µg g–1).At 0.61 mM Mn, concentrations of 3–4000 µg g–1 in the youngest fully-developed leaves did not bring about any decline in yield, and levels of up to 5000 µg g–1 occurred in individual potato leaves before Mn toxicity symptoms were observed. Potato foliage grown at the high Mn had similar leaf numbers, but showed an increased stem length and smaller leaves than foliage grown at 0.01 mM Mn. In particular, the leaf area of the middle and lower leaf fractions were affected by the high Mn level.The ability of rapidly growing plants to withstand high concentrations of Mn is discussed in relation to the pattern of dry matter and Mn accumulation shown by potato foliage.  相似文献   

4.
The marine algaBrachiomonas submarina var.pulsifera (Droop) CCAP 7/2A, is employed as a food organism in aquaculture; it can be cultured heterotrophically or mixotrophically. Growth rates and productivity under heterotrophic conditions were lower than those achieved under mixotrophic conditions. By reducing the osmotic potential of the medium, whilst simultaneously increasing the levels of nitrogen and phosphorus and using sodium acetate as a carbon source, a 20-fold increase in final yield was attained. This corresponded to a maximum culture of 9.02times 106 cells ml–1 and a dry weight of 2.51 g l–1.Author for correspondence  相似文献   

5.
During light induction for astaxanthin formation in Haematococcus pluvialis, we substituted photoautotrophic induction for heterotrophic induction using acetate, both to prevent contamination by heterotrophs due to addition of organic carbon and to enhance carbon assimilation in the induced cells. Strong photoautotrophic induction was performed by N-deprivation of photoautotrophically grown Haematococcus cells followed by supplementation with bicarbonate (HCO3) or CO2. Bicarbonate-induced cells contained more astaxanthin than acetate-induced cells, and even further enhancement of astaxanthin accumulation was achieved by continuous CO2 supply. The maximum astaxanthin content (77.2 mg g–1 biomass, 3.4-fold higher than with heterotrophic induction) was obtained under conditions of 5% CO2, yielding astaxanthin concentration and productivity of 175.7 mg l–1 and 6.25 mg l–1 day–1, respectively. The results indicate that photoautotrophic induction is more effective than heterotrophic induction for astaxanthin synthesis in H. pluvialis.  相似文献   

6.
This report describes the technique used to induce the hairy roots in Physalis minima (Linn.). Different types of explants obtained from in vitro germinated seedlings were aseptically co-cultivated with A. rhizogenesstrain LBA9402 in different media. Root growth and production of physalins were investigated in various basal media grown under dark and light conditions, and compared to that of normal root cultures. Transformed hairy root cultures grew rapidly and reach stationary phase after 15 days on a B5 medium. HPLC analysis of extracts of hairy root cultures showed that the maximum content of physalin B and F was 1.82 and 4.15 mg g–1 DW, respectively, when grown under dark conditions. Normal root cultures produced higher physalin B (1.60–1.62 mg g–1 DW) and F (3.30–3.75 mg g–1 DW) under the same culture conditions. Physalin F synthesis in light-grown root cultures was reduced significantly.  相似文献   

7.
Hairy roots of Astragalus membranaceus were grown in bioreactors up to 30 l for 20 d. Cultures from a 30 l airlift bioreactor gave 11.5 g l dry wt with 1.4 mg g–1 astragaloside IV, similar to cultures from 250 ml and 1 l flasks, but greater than yields from a 10 l bioreactor (dry wt 9.4 g l–1, astragaloside IV 0.9 mg g–1). Polysaccharide yields were similar amongst the different bioreactors (range 25–32 mg g–1). The active constituent content of the cells approached that of plant extracts, indicating that large scale hairy root cultures of A. membranaceus has the potential to provide an alternative to plant crops without compromising yield or pharmacological potential.  相似文献   

8.
To investigate the production potential of eicosapentaenoic acid (EPA) by the diatom Nitzschia laevis, the growth characteristics and fatty acid composition of the cells were studied under photoautotrophic, mixotrophic and heterotrophic conditions of growth. The specific growth rate and maximum biomass concentration were respectively 0.466 d–1 and 2.27 g l–1 for mixotrophic culture, 0.344 d–1 and 2.04 g l–1 for heterotrophic culture, and 0.167 d–1 and 0.5 g l–1 for photoautotrophic culture, respectively. As for EPA production, the yield and productivity were respectively 52.32 mg l–1 and 10.46 mg l–1 d for mixotrophic culture, 35.08 mg l–1 and 6.37 mg l–1 d for heterotrophic culture, and 6.78 mg l–1 and 3.39 mg l–1 d for photoautotrophic culture, respectively. Results suggest that mixotrophic culture is the most suitable growth mode for the production of EPA by the diatom Nitzschia laevis. The results are useful for the development of a cost-effective fermentation process for EPA production by Nitzschia laevis.  相似文献   

9.
A newly established Forsythia × intermedia cell suspension culture was shown to accumulate (+)- and (–)-pinoresinol as well as matairesinol. The influence of the sucrose content of the culture medium and of the cultivation time on pinoresinol and matairesinol accumulation was evaluated. The highest pinoresinol yield was achieved from cells grown in medium containing 6% sucrose for 12 ± 2 days with levels of 0.6–0.8 mg g–1 dry weight and an average enantiomeric composition of 75 ± 5% (+)-pinoresinol. The highest matairesinol amount was reached in the same medium at the 14th ± 2 culture day with levels of 1.0–2.7 mg g–1 dry weight. To our knowledge, this is the first report on pinoresinol accumulation in Forsythia × intermedia plants or cell suspension cultures.  相似文献   

10.
When Euglena gracilis was grown in the heterotrophic condition with glucose and (NH4)2SO4 as the carbon and nitrogen source, a high cell yield (4.28–4.48 g l–1) was obtained and the culture pH decreased to 1.6–2. The biomass production in the heterotrophic culture was compared to those in the autotrophic and mixotrophic cultures. Autotrophic growth was 4.7–6.3% of the heterotrophic one, whereas about 15–19% higher growth was obtained in the mixotrophic culture. Moreover, good production of chlorophyll (39.4 mg l–1) and carotenoids (13.8 mg l–1) were attained in the mixotrophic culture, giving the highest fermenter productivity with respect to biomass as well as chlorophyll and carotenoids. Through an energetic analysis in the mixotrophic culture, it was estimated about 25–28% of the total ATP requirement is formed in the photochemical reactions. This resulted in an improved biomass production in the mixotrophic culture of E. gracilis.  相似文献   

11.
Ferreira  L.H.P.L.  Molina  J.C.  Brasil  C.  Andrade  G. 《Plant and Soil》2003,256(1):161-168
The effect of B. thuringiensis and its crystal protein on plant growth and on functional groups of microorganisms is not well understood. Soybean (Glycine max) var. Br 322 was grown in non-sterile soil infested with three B. thuringiensis (Bt) inocula: insecticidal crystal protein producer (Cry+), a mutant non-producer (Cry–), or insecticidal crystal protein (ICP), at a rate of 107 cells g–1 dry soil or 1.25 mg of protein g–1 dry soil. Non-inoculated plants were maintained as control. Measurements were carried out on soil samples before sowing (time zero) and after sowing and inoculation (5, 15, 25, 35 and 45 d) on samples of rhizosphere soil. The effect of spore and crystal protein produced by B. thuringiensis on the populations of functional groups of microorganisms (bacteria including actinomycetes and fungi) involved in the biogeochemical cycling of carbon (cellulolytic, amylolytic and proteolytic), phosphorus (arbuscular mycorrhizal fungi), and nitrogen (number of nodules and proteolytic) were evaluated. Population sizes of culturable heterotrophic bacteria and saprophytic fungi were also evaluated. No difference was found in heterotrophic bacterial populations inoculated with B. thuringiensis. Difference was observed in functional groups of C-cycling microorganisms. Nodule formation and plant growth were increased by Cry+ strain and ICP when compared with uninoculated plants. Crystal protein did not show any effect on arbuscular mycorrhiza (AM) colonization. However, a deleterious effect was observed with Cry+ and Cry– strains that inhibited colonization of AM fungi when compared with uninoculated plants.  相似文献   

12.
Photoautotrophic cultivation of Euglena gracilis results in cells with high α-tocopherol content but the final cell concentration is usually very low due to the difficulty of supplying light efficiently to the photobioreactor. On the other hand, Euglena grows heterotrophically to high cell concentrations, using various organic carbon sources, but the α-tocopherol contents of heterotrophically grown cells are usually very low. Sequential heterotrophic/photoautotrophic cultivation, by which cells are grown heterotrophically to high cell concentrations and then transferred to photoautotrophic culture for accumulation of α-tocopherol was therefore investigated for efficient α-tocopherol production. In batch culture, using glucose as the organic carbon source, the cellular α-tocopherol content increased from 120 μg g−1 at the end of heterotrophic phase to more than 400 μg g−1 at the end of the photoautotrophic phase. By using ethanol as the organic carbon source during the heterotrophic phase, adding corn steep liquor as a nitrogen source and optimizing light supply during the photoautotrophic phase, the α-tocopherol content of the cells at the end of the photoautotrophic phase increased to 1700 μg g−1. A system consisting of a mini-jar fermentor (for the heterotrophic phase) and an internally illuminated photobioreactor (for the photoautotrophic phase) was then constructed for continuous sequential heterotrophic/photoautotrophic cultivation. The cells were continuously cultivated heterotrophically in the mini-jar fermentor and the effluent was continuously passed through the photobioreactor for α-tocopherol accumulation. In this way, it was possible to produce 7 g l−1 cells containing about 1100 μg α-tocopherol per g-cell continuously for more than 420 h. The continuous process resulted in α-tocopherol productivity of 100 μg l−1 h−1 which is about 9.5 and 4.6 times higher than those obtained in batch photoautotrophic culture and batch heterotrophic cultures, respectively.  相似文献   

13.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   

14.
Field investigations during the ice-free period of 1980 confirm that the dominant attached filamentous algae in the Canadian waters of Lake Huron are the green algae Ulothrix zonata and Cladophora glomerata, and the red alga Bangia atropurpurea. It is believed that nutrient availability limits the distribution of these algae, while temperature controls their seasonal periodicity. Because of favourable physical characteristics, the study area represents a vast potential habitat for attached filamentous algae. It is expected that eastern Georgian Bay, in particular, will suffer significant environmental degradation from the growth of Cladophora unless existing phosphorus levels are maintained indefinitely (i.e., < 0.005 mg total P 1–1). Attached filamentous algae accumulate (103 to 105 x) a variety of elements primarily in proportion to availability in the surrounding water. The occurrence of maximum algal metal concentrations at municipal waste water outfalls, river mouths and harbour areas (e.g., in µg g–1, Cr 29.0, Cu 46.4, Ni 34.0, Pb 55.0) is indicative of discrete source loadings, while elevated levels at remote sites in eastern Georgian Bay (e.g., in µg g–1, Cr 12.0–15.5, Cu 18.0, Ni 15.0–16.0, Pb 8.5–8.8) are suggestive of generalized loadings from the Canadian Shield, possibly due to the effects of acidic precipitation.  相似文献   

15.
After a period of more than ten years in which bacterial and algal community sizes were extremely small, a dense bloom of halophilic archaea developed in the upper 5–10 m of the Dead Sea water column in the summer of 1992. The development of this bloom followed a dilution of the upper water layer by winter rainfloods, which enabled the development of a short-lived dense bloom of the unicellular green alga Dunaliella parva. The dense archaeal community (up to 3.5 × 107 cells m1–1 in June 1992) imparted a red coloration to the Dead Sea, due to its high content of bacterioruberin. Bacteriorhodopsin was not detected. High levels of potential heterotrophic activity were associated with the bloom, as measured by the incorporation of labeled organic substrates. After the decline of the algal bloom, archaeal numbers in the lake decreased only little, and most of the community was still present at the end of 1993. The amount of carotenoid pigment per cell, however, decreased 2–3-fold between June 1992 and August 1993. No new algal and archaeal blooms developed after the winter floods of 1992–1993, in spite of the fact that salinity values in the surface layer were sufficiently low to support a new algal bloom. A remnant of the 1992 Dunaliella bloom maintained itself at the lower end of the pycnocline at depths between 7 and 13 m (September 1992–August 1993). Its photosynthetic activity was small, and very little stimulation of archaeal growth and activity was associated with this algal community.  相似文献   

16.
The annual algal bloom (February–June) in Lake Kinneret consists almost entirely of the dinoflagellatePeridinium cinctum f.westii (Dinophyceae). To clarify the role of phosphatases in the alga, experiments were carried out using cells from culture or from the lake. In culture, as the external ambient orthophosphate (Pi) concentration decreased, alkaline phosphatase activity increased (and to some extent acid phosphatase activity, as well). Hot water extractable P decreased, although molybdate reactive phosphorus (MRP) appeared to be utilized in preference to the non-MRP component of this pool. Alkaline phosphatase inPeridinium collected from the lake as well as cells grown in culture under a high (3–6 mg l–1) ambient Pi concentration in both continuous light and a 12:12 light-dark cycle, showed a diurnal fluctuation in activity. These results, together with previous observations suggest that the phosphatases inPeridinium are controlled by changes in intracellular phosphorus levels (other than the hot water extractable pool) and/or by other metabolic processes not directly involved in P nutrition.  相似文献   

17.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

18.
Electron probe X-ray microanalysis (XRMA) was used to determine the elemental composition of the blue-green alga, Microcystis aeruginosa, in a stratified freshwater lake during the late summer. Colonies of this alga were initially observed in mid-July, at a time when phosphorus concentration in the lake water had decreased to minimal levels (total P 0.04 mg l−1). The P quota of these cells was high (mean concentration 132 mmol kg−1 dry weight) with a cell P to lake water P concentration ratio of 105. The elemental concentrations of Microcystis remained relatively stable throughout the sampling period (July–September), with mean cell concentrations of Mg, P, S and Ca showing no significant changes. Mean elemental ratios and the ratio of monovalent/divalent cations were also relatively constant (SE <10% mean). The pattern of cell elemental associations, determined by Factor and Pearson correlation analysis, was consistent throughout – with Mg, P, K and S forming a core tetrad of inter-correlated elements. The relative constancy of cell composition seen in Microcystis would be expected of an alga with a K-selection strategy. The continued high P quota over a period of nutrient depletion in lake water is consistent with the ability of this alga to sink to nutrient-rich lower regions of the water column.  相似文献   

19.
Cell suspension cultures of Agave amaniensis and Costus speciosus were grown in media containing Cd2 + up to 25 and 20 mg l–1, respectively, and Pb2+ up to 40 mg l–1. The cultures hyper-accumulated Cd2+ up to 900 and 530 g g–1 and Pb2+ up to 1390 and 1170 g g–1 dry wt. in their respective biomasses. Increasing Pb2+ up to 30 mg l–1 increased the biomass production and total sitosterol content of Costus speciosus by up to 1.7- and 1.3-fold, respectively.  相似文献   

20.
Ultraviolet sunscreen compounds in epiphytic red algae from mangroves   总被引:3,自引:0,他引:3  
Karsten  Ulf  Sawall  Thomas  West  John  Wiencke  Christian 《Hydrobiologia》2000,432(1-3):159-171
Epiphytic red algae of the order Ceramiales from mangroves and salt marshes (nine species from Bostrychia, three from Stictosiphonia and four from Caloglossa) produce varying levels of the UV-absorbing compounds mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330 and palythinol, a suite of substances chemically assigned as mycosporine-like amino acids (MAAs). Mean MAA levels varied from 0.02 to 12.8 mg g–1 DW in field-collected and laboratory cultured specimens. While in field samples of Bostrychia montagneiHarvey, Bostrychia radicans (Montagne) Montagne and Caloglossa apomeiotica J.West et G.Zuccarello MAA concentrations were generally higher compared to cultured plants of the same taxa, Bostrychia tenella(Lamouroux) J.Agardh did not show such a difference. Catenella caespitosa (Withering) L.Irvine, Catenella impudica (Montagne) J.Agardh and Catenella nipae Zanardini (Gigartinales, Caulacanthaceae) produce two novel UV-absorbing compounds: MAA-1 (1.4–4.3 mg g –1 DW) and MAA-2 (0.1–1.0 mg g–1 DW), which absorb at 334 nm and 320 nm, respectively. In laboratory culture of Bostrychia moritziana when photosynthetically active radiation (PAR) was increased from 20 to 40 mol photons m–2 s–1, the total level of palythinol increased by 85% (from 2.0 to 3.7 mg g–1 DW). In a culture of Caloglossa leprieurii when PAR was increased from 40 to 80 mol m–2 s–1the porphyra-334 content increased by 77% (from 3.1 to 5.5 mg g–1 DW). Extremely high MAA contents of >30 mg g–1 DW were detected in mature tetrasporangial sori prepared from two isolates of laboratory-cultured reproductive Caloglossa apomeiotica compared to vegetative plants (about 10 mg MAAs g–1 DW) indicating tetraspores loaded up with UV-sunscreens. All data demonstrate that mangrove red algae contain high MAA concentrations, particularly the reproductive structures, and hence these compounds may act as biochemical photoprotectants against exposure to UV-radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号