首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
On the non-autoimmune C57BL/6 (B6) background, the chromosome 7-derived lupus susceptibility loci Sle3 and Sle5 have been shown to mediate an elevated CD4:CD8 ratio with an increase in activated CD4(+) T cells, decreased susceptibility to apoptosis, and a break in humoral tolerance. Development of subcongenic strains has subsequently shown that the elevated CD4:CD8 ratio is due to Sle3 but that both loci contribute to the development of autoantibodies. To elucidate the functional expression patterns of these loci, adoptive transfer experiments were conducted. All possible combinations of bone marrow reconstitution, including syngenic, were conducted between the congenic B6 and B6.Sle3/5 strains. It was found that the Sle3/5 locus was functionally expressed by bone marrow-derived cells, but not by host cells, and that the elevated CD4:CD8 phenotype could be reconstituted in radiation chimeras. Using Ly5-marked congenic strains and B6 host mice, additional experiments surprisingly demonstrated that the elevated CD4:CD8 ratio was neither an intrinsic property of the T cells nor of single positive thymocytes. Allotype-marked chimeras indicated that autoantibody production by B cells was also an extrinsic property, as shown by the fact that B cells without the Sle3/5 interval contributed to autoantibody production. These experiments strongly suggest that a gene within the B6.Sle3/5 interval was expressed by a bone marrow-derived, nonlymphocyte population in the thymus and periphery and was affecting T cell selection and/or survival.  相似文献   

2.
Lupus pathogenesis in the NZM2410 mouse model results from the expression of multiple interacting susceptibility loci. Sle2 on chromosome 4 was significantly linked to glomerulonephritis in a linkage analysis of a NZM2410 x B6 cross. Yet, Sle2 expression alone on a C57BL/6 background did not result in any clinical manifestation, but in an abnormal B cell development, including the accumulation of B-1a cells in the peritoneal cavity and spleen. Analysis of B6.Sle2 congenic recombinants showed that at least three independent loci, New Zealand White-derived Sle2a and Sle2b, and New Zealand Black-derived Sle2c, contribute to an elevated number of B-1a cells, with Sle2c contribution being the strongest of the three. To determine the contribution of these three Sle2 loci to lupus pathogenesis, we used a mapping by genetic interaction strategy, in which we bred them to B6.Sle1.Sle3 mice. We then compared the phenotypes of these triple congenic mice with that of previously characterized B6.Sle1.Sle2.Sle3, which express the entire Sle2 interval in combination with Sle1 and Sle3. Sle2a and Sle2b, but not Sle2c, contributed significantly to lupus pathogenesis in terms of survival rate, lymphocytic expansion, and kidney pathology. These results show that the Sle2 locus contains several loci affecting B cell development, with only the two NZW-derived loci having the least effect of B-1a cell accumulation significantly contributing to lupus pathogenesis.  相似文献   

3.
Polyclonal, generalized T cell defects, as well as Ag-specific Th clones, are likely to contribute to pathology in murine lupus, but the genetic bases for these mechanisms remain unknown. Mapping studies indicate that loci on chromosomes 1 (Sle1), 4 (Sle2), 7 (Sle3), and 17 (Sle4) confer disease susceptibility in the NZM2410 lupus strain. B6.NZMc7 mice are C57BL/6 (B6) mice congenic for the NZM2410-derived chromosome 7 susceptibility interval, bearing Sle3. Compared with B6 controls, B6.NZMc7 mice exhibit elevated CD4:CD8 ratios (2.0 vs 1.34 in 1- to 3-mo-old spleens); an age-dependent accumulation of activated CD4+ T cells (33.4% vs 21.9% in 9- to 12-mo-old spleens); a more diffuse splenic architecture; and a stronger immune response to T-dependent, but not T-independent, Ags. In vitro, Sle3-bearing T cells show stronger proliferation, increased expansion of CD4+ T cells, and reduced apoptosis (with or without anti-Fas) following stimulation with anti-CD3. With age, the B cells in this strain acquire an activated phenotype. Thus, the NZM2410 allele of Sle3 appears to impact generalized T cell activation, and this may be causally related to the low grade, polyclonal serum autoantibodies seen in this strain. Epistatic interactions with other loci may be required to transform this relatively benign phenotype into overt autoimmunity, as seen in the NZM2410 strain.  相似文献   

4.
The Sle1c lupus susceptibility interval spans a 7-Mb region on distal murine chromosome 1. Cr2 is the strongest candidate gene for lupus susceptibility in this interval, as its protein products are structurally and functionally altered. B6.Sle1c congenic mice develop Abs to chromatin by 9 mo of age with a 30% penetrance and do not develop GN. To determine whether the New Zealand White (NZW)-derived Sle1c interval would interact with New Zealand Black (NZB) genes to result in enhanced autoimmune phenotypes, NZB mice were bred with B6 or B6.Sle1c congenic mice and approximately 20 female offspring were selected from each breeding for longitudinal study. These mice differ only at the Sle1c locus at which they have either a NZB/B6 or NZB/NZW genotype. NZB x B6.Sle1c mice had an accelerated onset of anti-chromatin Abs (100 vs 68% at 6 mo, p = 0.006) and anti-dsDNA Abs (45 vs 5% at 9 mo, p = 0.0048). Furthermore, median titers of anti-chromatin and anti-dsDNA Abs were significantly higher in the NZB x B6.Sle1c group compared with the NZB x B6 group. This corresponded with a higher prevalence of proliferative GN at 12 mo (55 vs 16%, p = 0.0214) as well as increased glomerular deposition of C3 (p = 0.0272) and IgG (p = 0.032), although blood urea nitrogen remained normal and significant proteinuria was not identified in either group. These data show that the Sle1c interval accelerates and augments the loss of tolerance to chromatin and dsDNA induced by NZB genes and induces significantly greater end-organ damage.  相似文献   

5.
Sle is a susceptibility locus for systemic autoimmunity derived from the lupus-prone NZM2410 mouse. The New Zealand White-derived suppressive modifier Sles1 was identified as a specific modifier of Sle1 and prevents the development of IgG anti-chromatin autoantibodies mediated by Sle1 on the C57BL/6 (B6) background. Fine mapping of Sles1 with truncated congenic intervals localizes it to a approximately 956-kb segment of mouse chromosome 17. Sles1 completely abrogates the development of activated T and B cell populations in B6.Sle1. Despite this suppression of the Sle1-mediated cell surface activation phenotypes, B6.Sle1 Sles1 splenic B cells still exhibit intrinsic ERK phosphorylation. Classic genetic complementation tests using the nonautoimmmune 129/SvJ mouse suggests that this strain possesses a Sles1 allele complementary to that of New Zealand White, as evidenced by the lack of glomerulonephritis, splenomegaly, and antinuclear autoantibody production seen in (129 x B6.Sle1 Sles1)F(1)s. These findings localize and characterize the suppressive properties of Sles1 and implicate 129 as a useful strain for aiding in the identification of this elusive epistatic modifier gene.  相似文献   

6.
Sle1 is a major susceptibility locus in the NZM2410 murine model of systemic lupus erythematosus. When isolated on a C57BL/6 background in the B6.Sle1 congenic strain, Sle1 results in the production of high levels of anti-chromatin IgG Abs, histone-specific T cells, and increased B and T cell activation. We have shown by mixed bone marrow chimeras with allotypic markers that Sle1 is expressed in B cells. Using the same technique, we now show that it is also expressed in T cells. To assess whether Sle1 results in intrinsic defects in B or T cells, we have bred the muMT and Tcralpha(-/-) mutations onto B6.Sle1 resulting in the absence of circulating B cells and alphabeta T cells in B6.Sle1.muMT and B6.Sle1.Tcralpha(-/-), respectively. The immune phenotypes in these two strains were compared with that of B6.Sle1 and B6.muMT or B6.Tcralpha(-/-). Sle1-expressing B cells broke tolerance to chromatin in the absence of T cells, as shown by high levels of anti-ssDNA IgM Abs in B6.Sle1.Tcralpha(-/-) mice, and had an increased expression of activation markers. Conversely, increased expression of activation markers and increased cytokine production were observed in Sle1-expressing T cells in the absence of B cells in B6.Sle1.muMT mice. However, the production of IgG antinuclear Abs required the presence of both T and B cells. These experiments showed that Sle1 expression results in both B and T cells intrinsic defects and demonstrate that the documented involvement of each cell compartment in the production of anti-chromatin Abs corresponds to genetic defects rather than bystander effects.  相似文献   

7.
Lupus is a prototypic systemic autoimmune disease that has a significant genetic component in its etiology. Several genome-wide screens have identified multiple loci that contribute to disease susceptibility in lupus-prone mice, including the Fas-deficient MRL/Fas(lpr) strain, with each locus contributing in a threshold liability manner. The centromeric region of chromosome 7 was identified as a lupus susceptibility locus in MRL/Fas(lpr) mice as Lmb3. This locus was backcrossed onto the resistant C57BL/6 (B6) background, in the presence or absence of Fas, resulting in the generation of B6.MRLc7 congenic animals. Detailed analysis of these animals showed that Lmb3 enhances and accelerates several characteristics of lupus, including autoantibody production, kidney disease, and T cell activation, as well as accumulation of CD4(-)CD8(-) double-negative T cells, the latter a feature of Fas-deficient mice. These effects appeared to be dependent on the interaction between Lmb3 and Fas deficiency, as Lmb3 on the B6/+(Fas-lpr) background did not augment any of the lupus traits measured. These findings confirm the role of Lmb3 in lupus susceptibility, as a modifier of Fas(lpr) phenotype, and illustrate the importance of epistatic interaction between genetic loci in the etiology of lupus. Furthermore, they suggest that the genetic lesion(s) in MRLc7 is probably different from those in NZMc7 (Sle3/5), despite a significant overlap of these two intervals.  相似文献   

8.
The Sle1 locus is a key determinant of lupus susceptibility in the NZM2410 mouse model. Within Sle1, we have previously shown that Sle1a expression enhances activation levels and effector functions of CD4(+) T cells and reduces the size of the CD4(+)CD25(+)Foxp3(+) regulatory T cell subset, leading to the production of autoreactive T cells that provide help to chromatin-specific B cells. In this study, we show that Sle1a CD4(+) T cells express high levels of ICOS, which is consistent with their increased ability to help autoreactive B cells. Furthermore, Sle1a CD4(+)CD25(+) T cells express low levels of Foxp3. Mixed bone marrow chimeras demonstrated that these phenotypes require Sle1a to be expressed in the affected CD4(+) T cells. Expression of other markers generally associated with regulatory T cells (Tregs) was similar regardless of Sle1a expression in Foxp3(+) cells. This result, along with in vitro and in vivo suppression studies, suggests that Sle1a controls the number of Tregs rather than their function on a per cell basis. Both in vitro and in vivo suppression assays also showed that Sle1a expression induced effector T cells to be resistant to Treg suppression, as well as dendritic cells to overproduce IL-6, which inhibits Treg suppression. Overall, these results show that Sle1a controls both Treg number and function by multiple mechanisms, directly on the Tregs themselves and indirectly through the response of effector T cells and the regulatory role of dendritic cells.  相似文献   

9.
Genetic contributions of nonautoimmune SWR mice toward lupus nephritis.   总被引:1,自引:0,他引:1  
(SWR x New Zealand Black (NZB))F(1) (or SNF(1)) mice succumb to lupus nephritis. Although several NZB lupus susceptibility loci have been identified in other crosses, the potential genetic contributions of SWR to lupus remain unknown. To ascertain this, a panel of 86 NZB x F(1) backcross mice was immunophenotyped and genome scanned. Linkage analysis revealed four dominant SWR susceptibility loci (H2, Swrl-1, Swrl-2, and Swrl-3) and a recessive NZB locus, Nba1. Early mortality was most strongly linked to the H2 locus on chromosome (Chr) 17 (log likelihood of the odds (LOD) = 4.59 - 5.38). Susceptibility to glomerulonephritis was linked to H2 (Chr 17, LOD = 2.37 - 2.70), Swrl-2 (Chr 14, 36 cM, LOD = 2.48 - 2.71), and Nba1 (Chr 4, 75 cM, LOD = 2.15 - 2.23). IgG antinuclear autoantibody development was linked to H2 (Chr 17, LOD = 4.92 - 5.48), Swrl-1 (Chr 1, 86 cM, colocalizing with Sle1 and Nba2, LOD = 2.89 - 2.91), and Swrl-3 (Chr 18, 14 cM, LOD = 2.07 - 2.13). For each phenotype, epistatic interaction of two to three susceptibility loci was required to attain the high penetrance levels seen in the SNF(1) strain. Although the SWR contributions H2, Swrl-1, and Swrl-2 map to loci previously mapped in other strains, often linked to very similar phenotypes, Swrl-3 appears to be a novel locus. In conclusion, lupus in the SNF(1) strain is truly polygenic, with at least four dominant contributions from the SWR strain. The immunological functions and molecular identities of these loci await elucidation.  相似文献   

10.
11.
The abundance of B-1a cells found in the peritoneal cavity of mice is under genetic control. The lupus-prone mouse New Zealand Black and New Zealand White (NZB x NZW)F(1) and its derivative NZM2410 are among the strains with the highest numbers of peritoneal B1-a cells. We have previously identified an NZM2410 genetic locus, Sle2, which is associated with the production of large numbers of B-1a cells. In this paper, we examined the mechanisms responsible for this phenotype by comparing congenic C57BL/6 mice with or without Sle2. Fetal livers generated more B-1a cells in B6.Sle2 mice, providing them with a greater starting number of B-1a cells early in life. Sle2-expressing B1-a cells proliferated significantly more in vivo than their B6 counterparts, and reciprocal adoptive transfers showed that this phenotype is intrinsic to Sle2 peritoneal B cells. The rate of apoptosis detected was significantly lower in B6.Sle2 peritoneal cavity B-1a cells than in B6, with or without exogenous B cell receptor cross-linking. Increased proliferation and decreased apoptosis did not affect Sle2 peritoneal B-2 cells. In addition, a significant number of peritoneal cavity B-1a cells were recovered in lethally irradiated B6.Sle2 mice reconstituted with B6.Igh(a) bone marrow, showing radiation resistance in Sle2 B-1a cells or its precursors. Finally, B6.Sle2 adult bone marrow and spleen were a significant source of peritoneal B-1a cells when transferred into B6.Rag2(-/-) mice. This suggests that peritoneal B-1a cells are replenished throughout the animal life span in B6.Sle2 mice. These results show that Sle2 regulates the size of the B-1a cell compartment at multiple developmental checkpoints.  相似文献   

12.
Prolactin is of interest in the pathogenesis of systemic lupus erythematosus (SLE) because almost 25% of SLE patients display hyperprolactinemia, and serum prolactin correlates with disease activity in some patients. Furthermore, hyperprolactinemia causes early mortality in lupus-prone mice and induces a lupus-like phenotype in nonspontaneously autoimmune mice. We show here that the immunomodulatory effects of prolactin are genetically determined; hyperprolactinemia breaks B cell tolerance and causes a lupus-like serology in BALB/c mice expressing a transgene encoding the H chain of an anti-DNA Ab but not in C57BL/6 transgenic mice. In C57BL/6 mice that express both the H chain transgene and the lupus susceptibility interval Sle3/5, prolactin induces increased serum titers of anti-DNA Ab and glomerular Ig depositions. The increase in costimulation due to prolactin-mediated up-regulation of both CD40 on B cells and CD40L on T cells would appear to play a central role in lupus induction in this model.  相似文献   

13.
Genetic loci on New Zealand Black (NZB) chromosome 1 play an important role in the development of lupus-like autoimmune disease. We have shown previously that C57BL/6 mice with an introgressed NZB chromosome 1 interval extending from approximately 35 to 106 cM have significantly more severe autoimmunity than mice with a shorter interval extending from approximately 82 to 106 cM. Comparison of the cellular phenotype in these mice revealed that both mouse strains had evidence of increased T cell activation; however, activation was more pronounced in mice with the longer interval. Mice with the longer interval also had increased B cell activation, leading us to hypothesize that there were at least two independent lupus susceptibility loci on chromosome 1. In this study, we have used mixed hemopoietic radiation chimeras to demonstrate that autoimmunity in these mice arises from intrinsic B and T cell functional defects. We further show that a T cell defect, localized to the shorter interval, leads to spontaneous activation of T cells specific for nucleosome histone components. Despite activation of self-reactive T cells in mixed chimeric mice, only chromosome 1 congenic B cells produce anti-nuclear Abs and undergo class switching, indicating impaired B cell tolerance mechanisms. In mice with the longer chromosome 1 interval, an additional susceptibility locus exacerbates autoimmune disease by producing a positive feedback loop between T and B cell activation. Thus, T and B cell defects act in concert to produce and amplify the autoimmune phenotype.  相似文献   

14.
15.
FcγRIIB-deficient mice generated in 129 background (FcγRIIB(129)(-/-)) if back-crossed into C57BL/6 background exhibit a hyperactive phenotype and develop lethal lupus. Both in mice and humans, the Fcγr2b gene is located within a genomic interval on chromosome 1 associated with lupus susceptibility. In mice, the 129-derived haplotype of this interval, named Sle16, causes loss of self-tolerance in the context of the B6 genome, hampering the analysis of the specific contribution of FcγRIIB deficiency to the development of lupus in FcγRIIB(129)(-/-) mice. Moreover, in humans genetic linkage studies revealed contradictory results regarding the association of "loss of function" mutations in the Fcγr2b gene and susceptibility to systemic lupus erythematosis. In this study, we demonstrate that FcγRIIB(-/-) mice generated by gene targeting in B6-derived ES cells (FcγRIIB(B6)(-/-)), lacking the 129-derived flanking Sle16 region, exhibit a hyperactive phenotype but fail to develop lupus indicating that in FcγRIIB(129)(-/-) mice, not FcγRIIB deficiency but epistatic interactions between the C57BL/6 genome and the 129-derived Fcγr2b flanking region cause loss of tolerance. The contribution to the development of autoimmune disease by the resulting autoreactive B cells is amplified by the absence of FcγRIIB, culminating in lethal lupus. In the presence of the Yaa lupus-susceptibility locus, FcγRIIB(B6)(-/-) mice do develop lethal lupus, confirming that FcγRIIB deficiency only amplifies spontaneous autoimmunity determined by other loci.  相似文献   

16.
The development of lupus pathogenesis results from the integration of susceptibility and resistance genes. We have used a chronic graft-versus-host disease (cGVHD) model to characterize a suppressive locus at the telomeric end of the NZM2410-derived Sle2 susceptibility locus, which we named Sle2c2. cGVHD is induced normally in Sle2c2-expressing mice, but it is not sustained. The analysis of mixed bone marrow chimeras revealed that cGVHD resistance was eliminated by non-B non-T hematopoietic cells expressing the B6 allele, suggesting that resistance is mediated by this same cell type. Furthermore, Sle2c2 expression was associated with an increased number and activation of the CD11b(+) GR-1(+) subset of granulocytes before and in the early stage of cGVHD induction. We have mapped the Sle2c2 critical interval to a 6-Mb region that contains the Cfs3r gene, which encodes for the G-CSFR, and its NZM2410 allele carries a nonsynonymous mutation. The G-CSFR-G-CSF pathway has been previously implicated in the regulation of GVHD, and our functional data on Sle2c2 suppression suggest a novel regulation of T cell-induced systemic autoimmunity through myeloid-derived suppressor cells. The validation of Csf3r as the causative gene for Sle2c2 and the further characterization of the Sle2c2 MDSCs promise to unveil new mechanisms by which lupus pathogenesis is regulated.  相似文献   

17.
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.  相似文献   

18.
By assessing the development of Y-linked autoimmune acceleration (Yaa) gene-induced systemic lupus erythematosus in C57BL/6 (B6) x (New Zealand Black (NZB) x B6.Yaa)F(1) backcross male mice, we mapped three major susceptibility loci derived from the NZB strain. These three quantitative trait loci (QTL) on NZB chromosomes 1, 7, and 13 differentially regulated three different autoimmune traits: anti-nuclear autoantibody production, gp70-anti-gp70 immune complex (gp70 IC) formation, and glomerulonephritis. Contributions to the disease traits were further confirmed by generating and analyzing three different B6.Yaa congenic mice, each carrying one individual NZB QTL. The chromosome 1 locus that overlapped with the previously identified Nba2 (NZB autoimmunity 2) locus regulated all three traits. A newly identified chromosome 7 locus, designated Nba5, selectively promoted anti-gp70 autoantibody production, hence the formation of gp70 IC and glomerulonephritis. B6.Yaa mice bearing the NZB chromosome 13 locus displayed increased serum gp70 production, but not gp70 IC formation and glomerulonephritis. This locus, called Sgp3 (serum gp70 production 3), selectively regulated the production of serum gp70, thereby contributing to the formation of nephritogenic gp70 IC and glomerulonephritis, in combination with Nba2 and Nba5 in NZB mice. Among these three loci, a major role of Nba2 was demonstrated, because B6.Yaa Nba2 congenic male mice developed the most severe disease. Finally, our analysis revealed the presence in B6 mice of an H2-linked QTL, which regulated autoantibody production. This locus had no apparent individual effect, but most likely modulated disease severity through interaction with NZB-derived susceptibility loci.  相似文献   

19.
Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.NZBc4) exhibited a marked expansion of B1a and NKT cells in the surprising absence of autoimmunity. In this study, we sought to examine whether epistatic interactions between these two loci would affect lupus autoimmunity by generating bicongenic mice that carry both NZB chromosomal intervals. Compared with B6.NZBc1 mice, bicongenic mice demonstrated significantly decreased mortality, kidney disease, Th1-biased IgG autoantibody isotypes, and differentiation of IFN-γ-producing T cells. Furthermore, a subset of bicongenic mice exhibited a paucity of CD21(+)CD1d(+) B cells and an altered NKT cell activation profile that correlated with greater disease inhibition. Thus, NZBc4 contains suppressive epistatic modifiers that appear to inhibit the development of fatal NZBc1 autoimmunity by promoting a shift away from a proinflammatory cytokine profile, which in some mice may involve NKT cells.  相似文献   

20.
Systemic lupus erythematosus (SLE) is inherited as a complex polygenic trait. (New Zealand Black (NZB) x New Zealand White (NZW)) F(1) hybrid mice develop symptoms that remarkably resemble human SLE, but (NZB x PL/J)F(1) hybrids do not develop lupus. Our study was conducted using (NZW x PL/J)F(1) x NZB (BWP) mice to determine the effects of the PL/J and the NZW genome on disease. Forty-five percent of BWP female mice had significant proteinuria and 25% died before 12 mo of age compared with (NZB x NZW)F(1) mice in which >90% developed severe renal disease and died before 12 mo. The analysis of BWP mice revealed a novel locus (chi(2) = 25.0; p < 1 x 10(-6); log of likelihood = 6.6 for mortality) designated Wbw1 on chromosome 2, which apparently plays an important role in the development of the disease. We also observed that both H-2 class II (the u haplotype) and TNF-alpha (TNF(z) allele) appear to contribute to the disease. A suggestive linkage to proteinuria and death was found for an NZW allele (designated Wbw2) telomeric to the H-2 locus. The NZW allele that overlaps with the previously described locus Sle1c at the telomeric part of chromosome 1 was associated with antinuclear autoantibody production in the present study. Furthermore, the previously identified Sle and Lbw susceptibility loci were associated with an increased incidence of disease. Thus, multiple NZW alleles including the Wbw1 allele discovered in this study contribute to disease induction, in conjunction with the NZB genome, and the PL/J genome appears to be protective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号