首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retraction: Note from the Editor‐in‐Chief: This paper is retracted Objective: Metabolic syndrome (MS) is on the rise in youth. As high‐sensitivity C‐reactive protein (hs‐CRP) is associated with cardiovascular/metabolic disorders, we evaluated the association between MS and its components and hs‐CRP in a sample of Brazilian overweight and obese youth. Methods and Procedures: A total of 407 students (229 girls, 273 with excessive weight, 11.3 ± 3.2 years) were evaluated. Measurement included BMI, waist circumference (WC), blood pressure, lipids, insulin, and hs‐CRP. Excessive weight was defined using BMI z ‐score; MS by the modified National Cholesterol Education Program—Adult Treatment Panel III. Results: Subjects were classified into two groups: with MS (n = 72) and without (n = 335). hs‐CRP means and medians were higher in MS group (1.41 mg/l vs. 1.06 mg/l, P < 0.001; 2.21 mg/l vs. 1.23 mg/l, P < 0.001). Associations between hs‐CRP quartiles and insulin resistance (IR) (P < 0.001), MS (P < 0.001), WC (P < 0.000), BMI z‐score (P < 0.001), hypertension (P < 0.001), hypertriglyceridemia (P < 0.001), and low HDL‐c (P = 0.023) were significant; adjustment of hs‐CRP for BMI z‐score eliminated the previous association, except for the number of MS components (nMSc) (P < 0.001). Adjusting for homeostasis model assessment method of IR (HOMA‐IR) did not eliminate the relation between hs‐CRP and MS components. Furthermore, increases in BMI z ‐score and nMSc were associated with an increased hs‐CRP. Excessive weight (odds ratio (OR), 7.9; confidence interval (CI), 4.7–13.4; P = 0.000), hypertension (OR, 2.3; CI, 1.3–4.2; P = 0.003), and hypertriglyceridemia (OR, 2.3; CI, 1.5–3.7; P < 0.001) were independently associated with hs‐CRP. Discussion: In youth, hs‐CRP is strongly related with MS and its components, and is also determined by the body composition. This association indicates a precocious proinflammatory state.  相似文献   

2.
Obesity is associated with increased cardiovascular risk. Although short‐term weight loss improves vascular endothelial function, longer term outcomes have not been widely investigated. We examined brachial artery endothelium‐dependent vasodilation and metabolic parameters in 29 severely obese subjects who lost ≥10% body weight (age 45 ± 13 years; BMI 48 ± 9 kg/m2) at baseline and after 12 months of dietary and/or surgical intervention. We compared these parameters to 14 obese individuals (age 49 ± 11 years; BMI 39 ± 7 kg/m2) who failed to lose weight. For the entire group, mean brachial artery flow‐mediated dilation (FMD) was impaired at 6.7 ± 4.1%. Following sustained weight loss, FMD increased significantly from 6.8 ± 4.2 to 10.0 ± 4.7%, but remained blunted in patients without weight decline from 6.5 ± 4.0 to 5.7 ± 4.1%, P = 0.013 by ANOVA. Endothelium‐independent, nitroglycerin‐mediated dilation (NMD) was unaltered. BMI fell by 13 ± 7 kg/m2 following successful weight intervention and was associated with reduced total and low‐density lipoprotein cholesterol, glucose, hemoglobin A1c, and high‐sensitivity C‐reactive protein (CRP). Vascular improvement correlated most strongly with glucose levels (r = ?0.51, P = 0.002) and was independent of weight change. In this cohort of severely obese subjects, sustained weight loss at 1 year improved vascular function and metabolic parameters. The findings suggest that reversal of endothelial dysfunction and restoration of arterial homeostasis could potentially reduce cardiovascular risk. The results also demonstrate that metabolic changes in association with weight loss are stronger determinants of vascular phenotype than degree of weight reduction.  相似文献   

3.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

4.
Adrenomedullin (ADM) is a vasoactive peptide found to be related to obesity and its comorbidities: type 2 diabetes, hypertension, atherosclerosis, and coronary heart disease. ADM is increased both in plasma and in adipose tissue of obese individuals when compared to lean subjects and is considered as a member of the adipokine family. We determined plasma midregional proadrenomedullin (MR‐proADM) concentrations in a cohort of 357 subjects with BMI ranging from 17.5 to 42.3 kg/m2 and no additional medical history. In parallel, 28 severely obese patients scheduled to undergo laparoscopic Roux‐en‐Y gastric bypass (RYGB) surgery were studied at two time points: before and 1 year after surgery. Outcome measurements were: MR‐proADM, cortisol, leptin, C‐reactive protein (CRP) thyroid‐stimulating hormone (TSH), creatinine and metabolic parameters. BMI correlated significantly to plasma MR‐proADM levels (r = 0.714, P < 0.001), also after adjustment for age and gender (r = 0.767, P < 0.001). In obese subjects, there was a positive relationship between MR‐proADM and leptin (r = 0.511, P = 0.006). Following RYGB, plasma MR‐proADM decreased from 0.76 ± 0.03 to 0.62 ± 0.02 pg/ml (P < 0.0001). RYGB‐induced changes in MR‐proADM correlated significantly to changes in leptin (r = 0.533, P = 0.004) and in CRP (r = 0.429, P = 0.023). We conclude that BMI is an independent predictor of circulating MR‐proADM levels. Weight loss after RYGB is associated with a significant decrease in plasma MR‐proADM, which is related to surgery‐induced changes in both circulating leptin and systemic inflammation.  相似文献   

5.
Objective: Low plasma concentrations of high‐density lipoprotein (HDL)‐cholesterol and apolipoprotein A‐I (apoA‐I) are independent predictors of coronary artery disease and are often associated with obesity and the metabolic syndrome. However, the underlying kinetic determinants of HDL metabolism are not well understood. Research Methods and Procedures: We pooled data from 13 stable isotope studies to investigate the kinetic determinants of apoA‐I concentrations in lean and overweight—obese individuals. We also examined the associations of HDL kinetics with age, sex, BMI, fasting plasma glucose, fasting insulin, Homeostasis Model Assessment score, and concentrations of apoA‐I, triglycerides, HDL‐cholesterol and low‐density lipoprotein‐cholesterol. Results: Compared with lean individuals, overweight—obese individuals had significantly higher HDL apoA‐I fractional catabolic rate (0.21 ± 0.01 vs. 0.33 ± 0.01 pools/d; p < 0.001) and production rate (PR; 11.3 ± 4.4 vs. 15.8 ± 2.77 mg/kg per day; p = 0.001). In the lean group, HDL apoA‐I PR was significantly associated with apoA‐I concentration (r = 0.455, p = 0.004), whereas in the overweight—obese group, both HDL apoA‐I fractional catabolic rate (r = ?0.396, p = 0.050) and HDL apoA‐I PR (r = 0.399, p = 0.048) were significantly associated with apoA‐I concentration. After adjustment for fasting insulin or Homeostasis Model Assessment score, HDL apoA‐I PR was an independent predictor of apoA‐I concentration. Discussion: In overweight—obese subjects, hypercatabolism of apoA‐I is paralleled by an increased production of apoA‐I, with HDL apoA‐I PR being the stronger determinant of apoA‐I concentration. This could have therapeutic implications for the management of dyslipidemia in individuals with low plasma HDL‐cholesterol.  相似文献   

6.
Pigment epithelium‐derived factor (PEDF) is upregulated in obese rodents and is involved in the development of insulin resistance (IR). We aim to explore the relationships between PEDF, adiposity, insulin sensitivity, and cardiovascular risk factors in obese women with polycystic ovary syndrome (PCOS) and weight‐matched controls and to examine the impact of endurance exercise training on PEDF. This prospective cohort intervention study was based at a tertiary medical center. Twenty obese PCOS women and 14 non‐PCOS weight‐matched women were studied at baseline. PEDF, cardiometabolic markers, detailed body composition, and euglycemic—hyperinsulinemic clamps were performed and measures were repeated in 10 PCOS and 8 non‐PCOS women following 12 weeks of intensified aerobic exercise. Mean glucose infusion rate (GIR) was 31.7% lower (P = 0.02) in PCOS compared to controls (175.6 ± 96.3 and 257.2 ± 64.3 mg.m?2.min?1) at baseline, yet both PEDF and BMI were similar between groups. PEDF negatively correlated to GIR (r = ?0.41, P = 0.03) and high‐density lipoprotein (HDL) (r = ?0.46, P = 0.01), and positively to cardiovascular risk factors, systolic (r = 0.41, P = 0.02) and diastolic blood pressure (r = 0.47, P = 0.01) and triglycerides (r = 0.49, P = 0.004). The correlation with GIR was not significant after adjusting for fat mass (P = 0.07). Exercise training maintained BMI and increased GIR in both groups; however, plasma PEDF was unchanged. In summary, PEDF is not elevated in PCOS, is not associated with IR when adjusted for fat mass, and is not reduced by endurance exercise training despite improved insulin sensitivity. PEDF was associated with cardiovascular risk factors, suggesting PEDF may be a marker of cardiovascular risk status.  相似文献   

7.
Objective: Soluble CD163 (sCD163) is a new macrophage‐specific serum marker elevated in inflammatory conditions. sCD163 is elevated in obesity and found to be a strong predictor of the development of type 2 diabetes. We investigated whether dietary intervention and moderate exercise was related to changes in sCD163 and how sCD163 is associated to insulin resistance in obesity. Design and Methods: Ninety‐six obese subjects were enrolled: 62 followed a very low energy diet (VLED) program for 8 weeks followed by 3‐4 weeks of weight stabilization, 20 followed a moderate exercise program for 12 weeks, and 14 were included without any intervention. Fasting blood samples and anthropometric measures were taken at baseline and after intervention. Thirty‐six lean subjects were included in a control group. Results: sCD163 was significantly higher in obese subjects (2.3 ± 1.0 mg/l) compared with lean (1.6 ± 0.4 mg/l, P < 0.001). Weight loss (11%) induced by VLED resulted in a reduction and partial normalization of sCD163 to 2.0 ± 0.9 mg/l (P < 0.001). Exercise for 12 weeks had no effect on sCD163. At baseline, sCD163 was significantly correlated with BMI (r = 0.46), waist circumference (r = 0.40), insulin resistance measured by the homeostasis model assessment (HOMA‐IR; r = 0.41; all P < 0.001), and the leptin‐to‐adiponectin ratio (r = 0.28, P < 0.05). In a multivariate linear regression analysis with various inflammatory markers, sCD163 (β = 0.25), adiponectin (β = ?0.24), and high sensitivity C‐reactive protein (hs‐CRP; β = 0.20) remained independently and significantly associated to HOMA‐IR (all P < 0.05). After further adjustment for waist circumference, only sCD163 was associated with HOMA‐IR (P < 0.05). Conclusion: The macrophage‐specific serum marker sCD163 is increased in obesity and partially normalized by dietary‐induced weight loss but not by moderate exercise. Furthermore, we confirm that sCD163 is a good marker for obesity‐related insulin resistance.  相似文献   

8.
The aim of this study was to investigate the relationship between a sub‐population of endothelial progenitor cells (EPC), namely colony‐forming unit‐endothelial cells (CFU‐EC), their colony‐forming capacity and variable clinical parameters, including insulin resistance and oxidative stress, in obese individuals. Thirty‐eight obese adults (aged 42.5 ± 12.7), with BMI 32.3 ± 4.0 and 13 normal‐weight controls (aged 48.2 ± 12.9; BMI 23.2 ± 2.3) were studied. CFU‐EC colony‐forming capacity was impaired in the group of obese individuals compared to the normal‐weight controls (P = 0.001). The inverse correlation between homeostasis model assessment‐insulin resistance (HOMAIR) index and CFU‐EC number (r = ?0.558, P < 0.0001) as well as positive total antioxidant status of plasma (TAS)/CFU‐EC relation were noticed during the study. Additionally, correlations between the concentration of triglycerides (TG), high‐density lipoproteins (HDLs), and body composition parameters in the obese participants were established. Our results demonstrate that insulin resistance and oxidative stress have a significant impact on the CFU‐EC colony formation in obesity. Moreover, in multivariate regression analysis, in both studied groups, the HOMAIR index and HDL concentration were independent predictors of the number of CFU‐EC. Endothelium dysfunction, which can be present in obesity, may in part be caused by EPC function impairment in this condition.  相似文献   

9.
The prevalence of hypovitaminosis D is high among obese subjects. Further, low 25‐hydroxyvitamin D (25(OH)D) concentration has been postulated to be a risk factor for type 2 diabetes, although its relation with insulin‐sensitivity is not well investigated. Thus, we aimed to investigate the relationship between 25(OH)D concentration and insulin‐sensitivity, using the glucose clamp technique. In total, 39 subjects with no known history of diabetes mellitus were recruited. The association of 25(OH)D concentration with insulin‐sensitivity was evaluated by hyperinsulinemic euglycemic clamp. Subjects with low 25(OH)D (<50 nmol/l) had higher BMI (P = 0.048), parathyroid hormone (PTH) (P = 0.040), total cholesterol (P = 0.012), low‐density lipoprotein (LDL) cholesterol (P = 0.044), triglycerides (P = 0.048), and lower insulin‐sensitivity as evaluated by clamp study (P = 0.047). There was significant correlation between 25(OH)D and BMI (r = ?0.58; P = 0.01), PTH (r = ?0.44; P < 0.01), insulin‐sensitivity (r = 0.43; P < 0.01), total (r = ?0.34; P = 0.030) and LDL (r = ?0.40; P = 0.023) (but not high‐density lipoprotein (HDL)) cholesterol, and triglycerides (r = 0.45; P = 0.01). Multivariate analysis using 25(OH)D concentration, BMI, insulin‐sensitivity, HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides, as the cofactors was performed. BMI was found to be the most powerful predictor of 25(OH)D concentration (r = ?0.52; P < 0.01), whereas insulin‐sensitivity was not significant. Our study suggested that there is no cause–effect relationship between vitamin D and insulin‐sensitivity. In obesity, both low 25(OH)D concentration and insulin‐resistance appear to be dependent on the increased body size.  相似文献   

10.
The ability of alternate‐day fasting (ADF) to modulate adipocyte parameters in a way that is protective against coronary heart disease (CHD) has yet to be tested. Accordingly, we examined the effects of ADF on adipokine profile, body composition, and CHD risk indicators in obese adults. Sixteen obese subjects (12 women/4 men) participated in a 10‐week trial with three consecutive dietary intervention phases: (i) 2‐week baseline control phase, (ii) 4‐week ADF controlled feeding phase, and (iii) 4‐week ADF self‐selected feeding phase. After 8 weeks of treatment, body weight and waist circumference were reduced (P < 0.05) by 5.7 ± 0.9 kg, and 4.0 ± 0.9 cm, respectively. Fat mass decreased (P < 0.05) by 5.4 ± 0.8 kg, whereas fat‐free mass did not change. Plasma adiponectin was augmented (P < 0.05) by 30% from baseline. Leptin and resistin concentrations were reduced (P < 0.05) by 21 and 23%, respectively, post treatment. Low‐density lipoprotein cholesterol (LDL‐C) and triacylglycerol concentrations were 25% and 32% lower (P < 0.05), respectively, after 8 weeks of ADF. High‐density lipoprotein cholesterol (HDL‐C), C‐reactive protein, and homocysteine concentrations did not change. Decreases in LDL‐C were related to increased adiponectin (r = ?0.61, P = 0.01) and reduced waist circumference (r = 0.39, P = 0.04). Lower triacylglycerol concentrations were associated with augmented adiponectin (r = ?0.39, P = 0.04) and reduced leptin concentrations (r = 0.45, P = 0.03) post‐treatment. These findings suggest that adipose tissue parameters may play an important role in mediating the cardioprotective effects of ADF in obese humans.  相似文献   

11.
Our aim was to evaluate whether atrial electromechanical delay measured by tissue Doppler imaging (TDI), which is an early predictor of atrial fibrillation (AF) development, is prolonged in obese subjects. A total of 40 obese and 40 normal‐weight subjects with normal coronary angiograms were included in this study. P‐wave dispersion (PWD) was calculated on the 12‐lead electrocardiogram (ECG). Systolic and diastolic left ventricular (LV) functions, inter‐ and intra‐atrial electromechanical delay were measured by TDI and conventional echocardiography. Inter‐ and intra‐atrial electromechanical delay were significantly longer in the obese subjects compared with the controls (44.08 ± 10.06 vs. 19.35 ± 5.94 ms and 23.63 ± 6.41 vs. 5.13 ± 2.67 ms, P < 0.0001 for both, respectively). PWD was higher in obese subjects (53.40 ± 5.49 vs. 35.95 ± 5.93 ms, P < 0.0001). Left atrial (LA) diameter, LA volume index and LV diastolic parameters were significantly different between the groups. Interatrial electromechanical delay was correlated with PWD (r = 0.409, P = 0.009), high‐sensitivity C‐reactive protein (hsCRP) levels (r = 0.588, P < 0.0001). Interatrial electromechanical delay was positively correlated with LA diameter, LA volume index, and LV diastolic function parameters consisting of mitral early wave (E) deceleration time (DT) and isovolumetric relaxation time (IVRT; r = 0.323, P = 0.042; r = 0.387, P = 0.014; r = 0.339, P = 0.033; r = 0.325, P = 0.041; respectively) and, negatively correlated with mitral early (E) to late (A) wave ratio (E/A) (r = ?0.380, P = 0.016) and myocardial early‐to‐late diastolic wave ratio (Em/Am) (r = ?0.326, P = 0.040). This study showed that atrial electromechanical delay is prolonged in obese subjects. Prolonged atrial electromechanical delay is due to provoked low‐grade inflammation as well as LA enlargement and early LV diastolic dysfunction in obese subjects.  相似文献   

12.
The multifactorial mechanisms promoting weight loss and improved metabolism following Roux‐en‐Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G‐protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross‐sectional analysis of fasting serum bile acid composition and both fasting and post‐meal metabolic variables, in three subject groups: (i) post‐GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 ± 4.84 µmol/l) than in both overweight (3.59 ± 1.95, P = 0.005, Ov) and severely obese (3.86 ± 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2‐h post‐meal glucose (r = ?0.59, P < 0.003) and fasting triglycerides (r = ?0.40, P = 0.05), and positively correlated with adiponectin (r = ?0.48, P < 0.02) and peak glucagon‐like peptide‐1 (GLP‐1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = ?0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB.  相似文献   

13.
It is not known whether there are mechanisms linking adipose tissue mass and increased oxidative stress in obesity. This study investigated associations between decreasing general and abdominal fat depots and oxidative stress during weight loss. Subjects were severely obese women who were measured serially at baseline and at 1, 6 (n = 30), and 24 months (n = 18) after bariatric surgery. Total fat mass (FAT) and volumes of visceral (VAT) and subcutaneous abdominal adipose tissue (SAT) were related to plasma concentrations of derivatives of reactive oxidative metabolites (dROMS), a measure of lipid peroxides and oxidative stress. After intervention, BMI significantly decreased, from 47.7 ± 0.8 kg/m2 to 43.3 ± 0.8 kg/m2 (1 month), 35.2 ± 0.8 kg/m2 (6 months), and 30.2 ± 1.2 kg/m2 (24 months). Plasma dROMS also significantly deceased over time. At baseline, VAT (r = 0.46), FAT (r = 0.42), and BMI (r = 0.37) correlated with 6‐month decreases in dROMS. Similarly, at 1 month, VAT (r = 0.43) and FAT (r = 0.41) correlated with 6‐month decreases in dROMS. Multiple regression analysis showed that relationships between VAT and dROMS were significant after adjusting for FAT mass. Increased plasma dROMS at baseline were correlated with decreased concentrations of high‐density lipoprotein (HDL) at 1 and 6 months after surgery (r = ?0.38 and ?0.42). This study found longitudinal associations between general, and more specifically intra‐abdominal adiposity, and systemic lipid peroxides, suggesting that adipose tissue mass contributes to oxidative stress.  相似文献   

14.
As humans spend a significant amount of time in the postprandial state, we examined whether vascular reactivity (a key indicator of cardiovascular health) was different after a high‐fat meal in 11 obese (median BMI 46.4, age 32.1 ± 6.3 years, 7 men) and 11 normal weight (median BMI 22.6) age‐ and sex‐matched controls. At baseline and 1 and 3 h postmeal, blood pressure (BP), heart rate (HR), reactive hyperemia peripheral artery tonometry (RH‐PAT) index, radial augmentation index adjusted for HR (AIx75), brachial pulse wave velocity (PWVb), glucose, insulin, total and high‐density lipoprotein (HDL) cholesterol, and triglycerides were measured. Brachial flow‐mediated dilatation (FMD) and, by venous plethysmography, resting and hyperemic forearm blood flows (FBFs) were measured at baseline and 3 h. At baseline, obese subjects had higher systolic BP, HR, resting FBF, insulin and equivalent FMD, RH‐PAT, hyperemic FBF, AIx75, PWVb, glucose, total cholesterol, triglycerides, and lower HDL cholesterol. In obese and lean subjects, FMD at baseline and 3 h was not significantly different (6.2 ± 1.7 to 5.8 ± 4.3% for obese and 4.7 ± 4.1 to 4.3 ± 3.9% for normal weight, P = 0.975 for group × time). The meal did not produce significant changes in RH‐PAT, hyperemic FBF, and PWVb in either group (P > 0.1 for the effect of time and for group × time interactions). In conclusion, the vascular responses to a high‐fat meal are similar in obese and normal weight young adults. An exaggerated alteration in postprandial vascular reactivity is thus unlikely to contribute importantly to the increased cardiovascular risk of obesity.  相似文献   

15.
Tumor necrosis factor‐α (TNF‐α) is a proinflammatory cytokine which is commonly elevated in obese subjects and whose promoter is susceptible to be regulated by cytosine methylation. The aim of this research was to analyze whether epigenetic regulation of human TNF‐α promoter by cytosine methylation could be involved in the predisposition to lose body weight after following a balanced hypocaloric diet. Twenty‐four patients (12 women/12 men) with excessive body weight‐for‐height (BMI: 30.5 ± 0.32 kg/m2; age: 34 ± 4 years old) followed an 8‐week energy‐restricted diet. Blood mononuclear cell DNA, isolated before the nutritional intervention, was treated with bisulfite and a region of TNF‐α gene promoter (from ?360 to +50 bp) was sequenced. Obese men with successful weight loss (≥5% of initial body weight) showed lower levels of total TNF‐α promoter methylation (r = 0.74; P = 0.021), especially in the positions ?170 bp (r = 0.75, P = 0.005) and ?120 bp (r = 0.70, P = 0.011). Baseline TNF‐α circulating levels were positively associated with total promoter methylation (r = 0.84, P = 0.005) and methylation at position ?245 bp (r = 0.75, P = 0.020). TNF‐α promoter methylation could be a good inflammation marker predicting the hypocaloric diet‐induced weight‐loss, and constitutes a first step toward personalized nutrition based on epigenetic criteria.  相似文献   

16.
Objective: The lower mortality from coronary ischemic disease in populations living at high altitude has been related to an increase of high‐density lipoprotein (HDL)‐cholesterol at altitude. Leptin has been proposed as a cardiovascular risk factor. We investigated whether leptin varies according to the altitude at which people live. Research Methods and Procedures: This was a cross‐sectional study of the first 889 people enrolled in a cohort study in the Canary Islands, Spain. The relationship among serum leptin, altitude, obesity, and other cardiovascular risk factors was analyzed by bivariate and multivariate tests. Results: Leptin levels showed an inverse correlation to altitude expressed in meters (r = ?0.10). Obese subjects had this leptin‐altitude association (r = ?0.19), but they also had a direct correlation of leptin to HDL‐cholesterol (r = 0.27) and an inverse correlation of leptin to the total cholesterol‐to‐HDL‐cholesterol ratio (r = ?0.34), triglycerides (r = ?0.29), apolipoprotein B (r = ?0.21), and glycemia (r = ?0.19). Nonobese subjects had only the leptin‐altitude association (r = ?0.11). The final regression model included altitude as predictor. Other associated variables were gender, physical activity, BMI, age, smoking (reducing leptin independently of BMI), alcohol, heart rate, and income. Discussion: Serum leptin level decreases when altitude increases, and this association could help to explain the lower cardiovascular mortality rate at high altitude. However, because in obese subjects there is a direct association of leptin with HDL‐cholesterol and an inverse association with the lipid atherogenic fractions, we suggest the hypothesis of different roles for bound and free leptin, with free leptin being a cardiovascular protective factor in obese people.  相似文献   

17.
Visceral fat has been linked to insulin resistance and type 2 diabetes mellitus (T2DM); and emerging data links RBP4 gene expression in adipose tissue with insulin resistance. In this study, we examined RBP4 protein expression in omental adipose tissue obtained from 24 severely obese patients undergoing bariatric surgery, and 10 lean controls (4 males/6 females, BMI = 23.2 ± 1.5 kg/m2) undergoing elective abdominal surgeries. Twelve of the obese patients had T2DM (2 males/10 females, BMI: 44.7 ± 1.5 kg/m2) and 12 had normal glucose tolerance (NGT: 4 males/8 females, BMI: 47.6 ± 1.9 kg/m2). Adipose RBP4, glucose transport protein‐4 (GLUT4), and p85 protein expression were determined by western blot. Blood samples from the bariatric patients were analyzed for serum RBP4, total cholesterol, triglycerides, and glucose. Adipose RBP4 protein expression (NGT: 11.0 ± 0.6; T2DM: 11.8 ± 0.7; lean: 8.7 ± 0.8 arbitrary units) was significantly increased in both NGT (P = 0.03) and T2DM (P = 0.005), compared to lean controls. GLUT4 protein was decreased in both NGT (P = 0.02) and T2DM (P = 0.03), and p85 expression was increased in T2DM subjects, compared to NGT (P = 0.03) and lean controls (P = 0.003). Regression analysis showed a strong correlation between adipose RBP4 protein and BMI for all subjects, as well as between adipose RBP4 and fasting glucose levels in T2DM subjects (r = 0.76, P = 0.004). Further, in T2DM, serum RBP4 was correlated with p85 expression (r = 0.68, P = 0.01), and adipose RBP4 protein trended toward an association with p85 protein (r = 0.55, P = 0.06). These data suggest that RBP4 may regulate adiposity, and p85 expression in obese‐T2DM, thus providing a link to impaired insulin signaling and diabetes in severely obese patients.  相似文献   

18.
The aim of this study was to compare the acute effect of (i) meals rich in saturated fat, oleic acid, and α‐linolenic acid and (ii) meals rich in starch and fiber on markers of inflammation and oxidative stress in obese and lean women. In a crossover study, 15 abdominally obese women (age, 54 ± 9 years; BMI, 37.3 ± 5.5 kg/m2) and 14 lean women (age, 53 ± 10 years; BMI, 22.9 ± 1.9 kg/m2) consumed meals rich in cream (CR), olive oil (OL), canola oil (CAN), potato (POT), and All‐Bran (BRAN) in random order. Blood samples were collected before and up to 6 h after the meals and plasma interleukin‐6 (IL‐6), IL‐8, tumor necrosis factor‐α (TNF‐α), lipid peroxides (LPOs), free‐fatty acids (FFAs), insulin, glucose, and cortisol were measured. Plasma IL‐6 decreased significantly 1 h after the meals then increased significantly above baseline at 4 h and 6 h in obese women and at 6 h in lean women. The incremental area under the curve (iAUC) for IL‐6 was significantly (P = 0.02) higher in obese compared with lean women and was significantly lower following the high fiber BRAN meal compared with a POT meal (P = 0.003). Waist circumference (R = 0.491, P = 0.007) and cortisol AUC (R = ?0.415, P = 0.03) were significant determinants of the magnitude of 6 h changes in plasma IL‐6 after the meals. These findings suggest that the postprandial response of plasma IL‐6 concentrations may be influenced by the type of carbohydrate in the meal, central adiposity, and circulating cortisol concentrations in women.  相似文献   

19.

Objective:

Clinical evidences reported subclinical alterations of thyroid function in obesity, although the relationship between thyroid status and obesity remains unclear. We cross‐sectionally investigated the influence of metabolic features on hypothalamic–pituitary–thyroid axis in obesity.

Design and Methods:

We enrolled 60 euthyroid subjects with no history of type 2 diabetes mellitus and assessed the relationship of thyroid function with insulin resistance, measured using euglycemic clamp, and abdominal fat volume, quantified by computed tomography scan (CT scan). Thyroid stimulating hormone (TSH) correlated with BMI (r = 0.46; P = 0.02), both visceral (r = 0.58; P = 0.02) and subcutaneous adipose tissue volumes (r = 0.43; P = 0.03) and insulin resistance (inverse relationship with insulin sensitivity–glucose uptake: r = ?0.40; P = 0.04).

Results:

After performing multivariate regression, visceral adipose tissue volume was found to be the most powerful predictor of TSH (β = 3.05; P = 0.01), whereas glucose uptake, high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, subcutaneous adipose tissue volume, and triglycerides were not. To further confirm the hypothesis that high‐normal TSH values could be dependent on adipose tissue, and not on insulin resistance, we restricted our analyses to moderately obese subjects' BMI ranging 30‐35 kg/m2. This subgroup was then divided as insulin resistant and insulin sensitive according to the glucose uptake (≤ or >5 mg·kg?1·min?1, respectively). We did not find any statistical difference in TSH (insulin resistant: 1.62 ± 0.65 µU/ml vs. insulin sensitive: 1.46 ± 0.48; P = not significant) and BMI (insulin resistant: 32.2 ± 1.6 kg/m2 vs. insulin sensitive: 32.4 ± 1.4; P = not significant), thus confirming absence of correlation between thyroid function and insulin sensitivity per se.

Conclusion:

Our study suggests that the increase in visceral adipose tissue is the best predictor of TSH concentration in obesity, independently from the eventual concurrent presence of insulin resistance.
  相似文献   

20.
Objective: The objective was to evaluate two accelerometers, the RT3 and the TriTrac‐R3D for their ability to produce estimates of physical activity‐related energy expenditure (PAEE) in overweight/obese adults. Research Methods and Procedures: PAEE estimates from both accelerometers were obtained in two experiments. In Experiment 1, 13 overweight/obese subjects (BMI 34.2 ± 6.4 kg/m2) were monitored over 2 weeks in everyday life, PAEE being simultaneously measured by the doubly labeled water method (DLW). In Experiment 2, 8 overweight/obese subjects (BMI 34.3 ± 5.0 kg/m2) and 10 normal‐weight subjects (BMI 20.8 ± 2.1 kg/m2) were monitored during a treadmill walking protocol, PAEE being simultaneously measured by indirect calorimetry. Results: In Experiment 1, there was no significant difference between methods in mean PAEE (DLW: 704 ± 223 kcal/d, RT3: 656 ± 140 kcal/d, TriTrac‐R3D 624 ± 419 kcal/d). The relative difference between methods (accelerometer vs. DLW) was ?17.1% ± 16.7% for the RT3 and ?20.0 ± 44.6% for the TriTrac‐R3D. Correlation for PAEE between RT3 and DLW was higher than between TriTrac‐R3D and DLW (r = 0.67, p < 0.05 and r = 0.36, p = 0.25, respectively). The 95% confidence interval (CI) (kcal/d) of the mean difference between methods was large, amounting to ?385 to 145 for the RT3 and ?887 to 590 for the TriTrac‐R3D. In Experiment 2, both accelerometers were sensitive to the changes in treadmill speed, with no significant difference in mean PAEE between methods in overweight/obese subjects. Conclusions: Although both accelerometers did not provide accurate estimates of PAEE at individual levels, the data suggest that RT3 has the potential to assess PAEE at group levels in overweight/obese subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号