首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because the CB1 receptor antagonist SR141716 was previously reported to modulate food intake in rodents, we studied its efficacy in reducing obesity in a diet-induced obesity (DIO) model widely used for research on the human obesity syndrome. During a 5-wk treatment, SR141716 (10 mg. kg(-1). day(-1) orally) induced a transient reduction of food intake (-48% on week 1) and a marked but sustained reduction of body weight (-20%) and adiposity (-50%) of DIO mice. Furthermore, SR141716 corrected the insulin resistance and lowered plasma leptin, insulin, and free fatty acid levels. Most of these effects were present, but less pronounced at 3 mg. kg(-1). day(-1). In addition to its hypophagic action, SR141716 may influence metabolic processes as the body weight loss of SR141716-treated mice was significantly higher during 24-h fasting compared with vehicle-treated animals, and when a 3-day treatment was compared with a pair feeding. SR141716 had no effect in CB1 receptor knockout mice, which confirmed the implication of CB1 receptors in the activity of the compound. These findings suggest that SR141716 has a potential as a novel anti-obesity treatment.  相似文献   

2.
Hedgehog (Hh) signaling emerges as a potential pathway contributing to fat formation during postnatal development. In this report, we found that Patched 1 (Ptc1), a negative regulator of Hh signaling, was expressed in the epididymal fat pad of adult mice. Reduced total white fat mass and epididymal adipocyte cell size were observed in naturally occurring spontaneous mesenchymal dysplasia (mes) adult mice (Ptc1(mes/mes)), which carry a deletion of Ptc1 at the carboxyl-terminal cytoplasmic region. Increased expression of truncated Ptc1, Ptc2 and Gli1, the indicators of ectopic activation of Hh signaling, was observed in epididymal fat pads of adult Ptc1(mes/mes) mice. In contrast, expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, adipocyte P2 and adipsin were reduced in epididymal fat pads of adult Ptc1(mes/mes) mice. Taken together, our results indicate that deletion of carboxyl-terminal tail of Ptc1 can lead to the reduction of white fat mass during postnatal development.  相似文献   

3.
Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies.  相似文献   

4.
Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a “western diet.” sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3‐L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a “western diet,” total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator–activated receptor γ (PPARγ) agonists increased the expression of sEH in mature 3T3‐L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity.  相似文献   

5.
Zinc transporter 7 (Znt7, Slc30a7) knockout (KO) mice display abnormalities in body weight gain and body adiposity. Regulation of body weight and body fat accumulation is complex, involving multiple genetic and environmental factors. To understand how zinc homeostasis influences body weight and fat deposit and to identify quantitative trait loci (QTLs) that link zinc metabolism to growth and adiposity, we conducted a genome-wide mapping study using male F2 Znt7 KO mice and wild-type (WT) littermates with a mixed 129P1/ReJ and C57BL/6J genetic background. The mice were fed a semi-purified diet containing 30-mg Zn/kg diet at weaning. Body weights and fat pad weights including epididymal, retroperitoneal, and femoral subcutaneous fat pads were measured at 16 weeks of age. We detected two significant QTLs (p < 0.05) for body weight and fat deposit. One was in the F2 Znt7 KO population and the other in the F2 WT population. In Znt7 KO mice, the body weight and fat deposit was significantly linked to a locus on chromosome 7 ranging from 64.3 to 78.3 Mb. In WT mice, a significant linkage of retroperitoneal fat mass was found on chromosome 8 between 14.5 and 63.5 Mb. In addition, several other suggestive QTLs (p < 0.63) for body weight and fat accumulation were detected in Znt7 KO and WT mice. In conclusion, the QTLs identified in this study may provide new hints to uncover the genes linking cellular zinc status to growth and body fat accumulation.  相似文献   

6.
The regulation of body weight/fat was studied by investigating mechanisms for compensatory adipose tissue growth after removal of bilateral epididymal fat pads from male adult Wistar rats. Food intake during the first 4 weeks and energy expenditure on Days 8-10 postsurgery were not different between lipectomized and sham operated rats. During Days 29-31 post surgery, a small (2.4%) but significant (P < 0.05) increase in heat production per metabolic body size was detected in lipectomized as compared with sham operated rats. The carcass composition of lipectomized and sham operated rats was not significantly different 16 weeks after surgery. The compensatory growth was fat pad-specific: mesenteric, retroperitoneal, and inguinal fat pads, but not perirenal fat pads, were heavier in lipectomized rats than in sham operated rats as early as 4 weeks postsurgery. Examination of fat cell size distribution in the compensating pads indicated a shift toward larger cells in retroperitoneal fat, but not in inguinal fat of lipectomized as compared with sham operated rats. Serum from lipectomized rats, but not media conditioned by exposure to retroperitoneal fat pads from lipectomized rats, stimulated proliferation of preadipocytes in vitro more than that from sham operated rats. Thus, compensatory adipose tissue growth after lipectomy may be mediated, in part, by blood-borne factors that are derived from tissues other than adipose tissue.  相似文献   

7.
Objective: To determine if group housing affects the variance of body composition parameters in a highly inbred mouse strain. Research Methods and Procedures: Thirty 3‐week‐old male C57BL/6J mice were obtained from the Jackson Laboratory. Fifteen mice were housed individually, and 15 mice were housed in groups of 5/cage. Animals were fed ad libitum and maintained in the same room under a 12:12‐hour light/dark photoperiod at 22 °C for 9 weeks. Animals were killed, and fat mass, soft‐lean tissue mass, bone mineral density (BMD), and bone mineral content (BMC) were determined by DXA. At necropsy, weights of the paired epididymal fat pads, paired retroperitoneal fat pads, right inguinal fat pad, liver, kidneys, paired testes, and seminal vesicles were obtained. Results: Relative to mice housed singly, group‐housed mice showed significantly greater variance in percentage of body fat, testes weight, and BMC. Group‐housed mice tended to show greater variance in liver weights and BMD. Mice housed singly were smaller, had less soft‐lean tissue mass and BMC, and lower BMD when compared with group‐housed mice. Discussion: These results suggest that with respect to body composition parameters, mice housed singly are more similar to one another than are group‐housed mice, most likely because of a reduction in environmental (predominately behavioral/social) effects. Thus, mice housed singly may be more representative of genotypic effects on body composition than group‐housed mice. Whether other inbred strains of mice show similar responses to housing condition is unknown.  相似文献   

8.
Obesity is a chronic metabolic disorder caused by imbalance between energy intake and expenditure, and is one of the principal causative factors in the development of metabolic syndrome, diabetes and cancer. COH-SR4 (“SR4”) is a novel investigational compound that has anti-cancer and anti-adipogenic properties. In this study, the effects of SR4 on metabolic alterations in high fat diet (HFD)-induced obese C57BL/J6 mice were investigated. Oral feeding of SR4 (5 mg/kg body weight.) in HFD mice for 6 weeks significantly reduced body weight, prevented hyperlipidemia and improved glycemic control without affecting food intake. These changes were associated with marked decreases in epididymal fat mass, adipocyte hypertrophy, increased plasma adiponectin and reduced leptin levels. SR4 treatment also decreased liver triglycerides, prevented hepatic steatosis, and normalized liver enzymes. Western blots demonstrated increased AMPK activation in liver and adipose tissues of SR4-treated HFD obese mice, while gene analyses by real time PCR showed COH-SR4 significantly suppressed the mRNA expression of lipogenic genes such as sterol regulatory element binding protein-1c (Srebf1), acetyl-Coenzyme A carboxylase (Acaca), peroxisome proliferator-activated receptor gamma (Pparg), fatty acid synthase (Fasn), stearoyl-Coenzyme A desaturase 1 (Scd1), carnitine palmitoyltransferase 1a (Cpt1a) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), as well as gluconeogenic genes phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc) in the liver of obese mice. In vitro, SR4 activates AMPK independent of upstream kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Together, these data suggest that SR4, a novel AMPK activator, may be a promising therapeutic compound for treatment of obesity, fatty liver disease, and related metabolic disorders.  相似文献   

9.
Behavioral therapies aimed at reducing excess body fat result in limited fat loss after dieting. To understand the causes for maintenance of adiposity, high‐fat (HF) diet–induced obese (DIO) mice were switched to a low‐fat chow diet, and the effects of chow on histological and molecular alterations of adipose tissue and metabolic parameters were examined. DIO mice reduced and stabilized their body weights after being switched to chow (HF‐chow), but retained a greater amount of adiposity than chow‐fed mice. Reduction in adipocyte volume, not number, caused a decrease in fat mass. HF‐chow mice showed normalized circulating insulin and leptin levels, improved glucose tolerance, and reduced inflammatory status in white adipose tissue (WAT). Circulating leptin levels corrected for fat mass were lower in HF‐chow mice. Leptin administration was used to test whether reduced leptin level of HF‐chow mice inhibited further fat loss. Leptin treatment led to an additional reduction in adiposity. Finally, HF‐HF mice had lower mRNA levels of β3 adrenergic receptor (β3‐AR) in epididymal WAT (EWAT) compared to chow‐fed mice, and diet change led to an increase in the WAT β3‐AR mRNA levels that were similar to the levels of chow‐fed mice, suggesting an elevation in sympathetic activation of WAT during diet switch relative to HF‐HF mice leading to the reduced leptin level and proinflammatory cytokine content. In summary, HF‐chow mice were resistant to further fat loss due to leptin insufficiency. Diet alteration from HF to low fat improved metabolic state of DIO mice, although their adiposity was defended at a higher level.  相似文献   

10.
Summary Replicated within full-sib family single-trait selection was conducted for 10 generations in mice for (1) high or low 12-week epididymal fat pad percentage (100 x epididymal fat pad weight/body weight) or (2) high or low 12-week hind carcass percentage (100 x hind carcass weight/body weight). Pooled realized heritabilities based on high, low and divergent selection were 0.66±0.09, 0.65±0.13 and 0.66±0.05 for epididymal fat pad percentage and 0.48±0.08, 0.33±0.08 and 0.40±0.04 for hind carcass percentage. The pooled realized genetic correlation (rG R) between epididymal fat pad percentage and hind carcass percentage based on divergence was –0.67±0.04. Other estimates of (rG R) were: epididymal fat pad percentage with body weight (0.57±0.05); epididymal fat pad percentage with epididymal fat pad weight (1.17±0.05); hind carcass percentage with body weight (–0.61±0.09); hind carcass percentage with hind carcass weight (–0.05±0.11). Indirect measures of fat and lean tissue percentages were highly heritable, and (rG R) between them would be desirable from the standpoint of analogous types of traits in livestock. In the same context, undesirable (rG R)'s were found between epididymal fat pad percentage and body weight and between hind carcass percentage and body weight.Paper No. 10957 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601, USA. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

11.
Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli and chemoattractants such as platelet-derived growth factor (PDGF) are key events in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation and migration in various cell types through cannabinoid receptors. Here we investigated the effects of CB1 receptor antagonist rimonabant (SR141716A), which has recently been shown to have anti-atherosclerotic effects both in mice and humans, on PDGF-induced proliferation, migration, and signal transduction of human coronary artery smooth muscle cells (HCASMCs). PDGF induced Ras and ERK 1/2 activation, while increasing proliferation and migration of HCASMCs, which were dose dependently attenuated by CB1 antagonist, rimonabant. These findings suggest that in addition to improving plasma lipid alterations and decreasing inflammatory cell migration and inflammatory response, CB1 antagonists may exert beneficial effects in atherosclerosis and restenosis by decreasing vascular smooth muscle proliferation and migration.  相似文献   

12.
Recent evidence showed that the endocannabinoid system plays an important role in the behavioral adaptation of stress and fear responses. In this study, we chose a behavioral paradigm that includes criteria of both fear and stress responses to assess whether the involvement of endocannabinoids in these two processes rely on common mechanisms. To this end, we delivered a footshock and measured the fear response to a subsequently presented novel tone stimulus. First, we exposed different groups of cannabinoid receptor type 1 (CB1)‐deficient mice (CB1?/?) and their wild‐type littermates (CB1+/+) to footshocks of different intensities. Only application of an intense footshock resulted in a sustained fear response to the tone in CB1?/?. Using the intense protocol, we next investigated whether endocannabinoids mediate their effects via an interplay with corticotropin‐releasing hormone (CRH) signaling. Pharmacological blockade of CB1 receptors by rimonabant in mice deficient for the CRH receptor type 1 (CRHR1?/?) or type 2 (CRHR2?/?), and in respective wild‐type littermates, resulted in a sustained fear response in all genotypes. This suggests that CRH is not involved in the fear‐alleviating effects of CB1. As CRHR1?/? are known to be severely impaired in stress‐induced corticosterone secretion, our observation also implicates that corticosterone is dispensable for CB1‐mediated acute fear adaptation. Instead, conditional mutants with a specific deletion of CB1 in principal neurons of the forebrain (CaMK‐CB1?/?), or in cortical glutamatergic neurons (Glu‐CB1?/?), showed a similar phenotype as CB1?/?, thus indicating that endocannabinoid‐controlled glutamatergic transmission plays an essential role in acute fear adaptation.  相似文献   

13.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB2 cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB2 receptors in the brain need to be clarified. The aim of our work was to study the μ-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB2 receptor antagonist SR144528 in brainstem of mice deficient in either CB1 or CB2 receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB2 cannabinoid antagonist SR144528, suggesting a CB2 receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [35S]GTPγS binding assay to analyze the capability of μ-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB1 wild-type and CB1 knockout mice after a single injection of SR144528 at 0.1 mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB1 wild-type and CB1 knockout mice. In vitro addition of 1 μM SR144528 caused a decrease in the maximal stimulation of DAMGO in [35S]GTPγS binding assays in CB2 wild-type brainstem membranes whereas no significant changes were observed in CB2 receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB2 cannabinoid receptors.  相似文献   

14.
We studied the relationships among serum triacylglycerol (TG), fat pad weight, and lipolytic response to norepinephrine (NE) in iron-deficient rats. We used male Sprague-Dawley International Golden Standard rats. The rats were randomly divided into four groups: two iron-adequate groups for 1 week (1A) and 5 weeks (5A), and two iron-deficient groups for 1 week (1D) and 5 weeks (5D), based on the AIN-93G diet. Iron-deficient treatment caused a significant decrease in hemoglobin (Hb) and hematocrit (Hct) values and an increase in relative heart weight in 1D and 5D rats. Although serum TG was not affected by the 1-week iron-deficient treatment, it was significantly increased by 5-week iron-deficient treatment. The 1-week iron-deficient treatment significantly decreased the relative weight of the retroperitoneal fat pads, but not that of the epididymal fat pads. On the other hand, the 5-week iron-deficient treatment significantly decreased the relative weight of both fat pads; the degree of decrease was 41% and 32% for retroperitoneal and epididymal fat pads, respectively. Basal lipolysis significantly decreased in the epididymal adipocytes from 1D rats, whereas lipolytic response to NE markedly increased. No effect due to the 5-week treatment on basal lipolysis was observed in either retroperitoneal or epididymal adipocytes. In addition, lipolytic response to NE significantly increased in the retroperitoneal, but not the epididymal adipocytes. These results demonstrate that the effects of an iron-deficient diet on fat pad weight are different, depending on the duration of the treatment and the location of fat pads. In addition, iron deficiency-caused hypertriacylglycerolmia may be predominantly related to the increase in lipolysis in retroperitoneal rather than in epididymal adipocytes. The data further show that the increase in lipolysis of epididymal adipocytes occurs in the earlier stage prior to a severe iron-deficient state.  相似文献   

15.
Objective: To compare the effectiveness of a conjugated linoleic acid (CLA) isomer mixture (mCLA) with each main isomer [trans-10,cis-12 CLA (CLA10,12) and cis-9,trans-11 CLA (CLA9,11)] in causing body lipid loss and adipose tissue apoptosis. Research Methods and Procedures: Mice selected over 16 generations for high (MH) or low (ML) energy expenditure and a control group (MC) were fed diets containing either soy oil or soy oil plus mCLA, CLA10,12, or CLA9,11 for 5 days in one study and 14 days in a second study. Results: Mice fed mCLA or CLA10,12 had less body lipid (p < 0.05), smaller retroperitoneal fat pads (p < 0.05), and ate less (p < 0.01) than mice fed no CLA or CLA9,11 for 5 days. Mice consuming 1% mCLA or 0.5% CLA10,12 gained less weight (p < 0.01) and had less body lipid (p < 0.05) and smaller epididymal (p < 0.05) and retroperitoneal fat pads (p < 0.01) than mice consuming either control or 0.5% CLA9,11-containing diets for 14 days. Only mCLA and CLA10,12 increased apoptosis in retroperitoneal fat pads (p < 0.01). The effects of mCLA and CLA10,12 were independent of genetic line except for the effect on adipocyte apoptosis. Mice of the MH line were slightly less sensitive than MC or ML mice to CLA-induced adipose tissue apoptosis. Discussion: CLA10,12, but not CLA9,11, can induce both body fat loss and adipose apoptosis. Although mice of a genotype with less body fat and greater metabolic rate and feed intake appear less sensitive, these CLA effects are robust for mice of varying metabolic background.  相似文献   

16.
The influence of two different grades of exogenous hypercortisolism on body weight, epididymal fat pad weight and the total number of fat cells in epididymal fat pads was investigated in young, growing rats. Cortisol, 4-5 mg/kg/day orally from the 7th to the 9th week, reduced body weight gain, whereas epididymal fat pad weight and fat cell content did not differ from those of the control rats. Cortisone acetate, 2.5 mg per 100 g, given subcutaneously for 2 weeks to rats 4-11 week of age caused in the young rat (4-6 weeks) a partial inhibition of the normal increase in body weight, whereas in the young-adult rat (6 weeks and older) an actual decrease of body weight was seen. At both dose levels and - with respect to the higher dose level- in all age groups studied, the weight and fat cell content of the epididymal fat pad were not changed by the cortisone (cortisol) treatment.  相似文献   

17.
To augment the limited work reported in the literature regarding testing of the hormonal temporal synergism hypothesis in Syrian hamsters (Joseph MM, Meier AH. Proc Soc Exp Biol Med. 1974;146:1150-5), a large experiment with female hamsters was conducted. Forty-eight received corticosterone at 18:00 h on January 21, 23, 25, 27, and 29 and ovine prolactin at one of six times of day beginning January 22 for 8 days; 36 received saline (at 18:00) and prolactin at one of the six times of day for 8 days; 35 received only prolactin at one of the six times of day for 8 days; and 16 received no injections. Twelve hamsters receiving corticosterone and prolactin and eight uninjected hamsters were on running wheels. The corticosterone and prolactin group not on wheels had a body weight gain and no circadian rhythm of weight gain, but did have circadian rhythms of response in organ weight, per 100 g of body weight, and in weights of fat pads and uteri. The corticosterone and prolactin group with access to running wheels gained in body weight and had larger ovaries and smaller fat pads. Hamsters receiving saline and prolactin had a body weight gain, but had no circadian rhythms of response in organ weights. The hamsters receiving only prolactin gained in body weight but had no rhythms of response, except for unexpected circadian rhythms in body weight gain and weights of fat pads. The uninjected hamsters had a modest weight gain. Most or all hamsters with access to running wheels freeran, and the corticosterone injections did not appear to synchronize the locomotor activity rhythms. In conclusion, corticosterone does interact with the injection time effect of prolactin on weights of fat pads, paired ovaries, and uteri. The mechanism of that effect, in terms of circadian rhythm theory, is unclear.  相似文献   

18.
To augment the limited work reported in the literature regarding testing of the hormonal temporal synergism hypothesis in Syrian hamsters (Joseph MM, Meier AH. Proc Soc Exp Biol Med. 1974;146:1150-5), a large experiment with female hamsters was conducted. Forty-eight received corticosterone at 18:00 h on January 21, 23, 25, 27, and 29 and ovine prolactin at one of six times of day beginning January 22 for 8 days; 36 received saline (at 18:00) and prolactin at one of the six times of day for 8 days; 35 received only prolactin at one of the six times of day for 8 days; and 16 received no injections. Twelve hamsters receiving corticosterone and prolactin and eight uninjected hamsters were on running wheels. The corticosterone and prolactin group not on wheels had a body weight gain and no circadian rhythm of weight gain, but did have circadian rhythms of response in organ weight, per 100 g of body weight, and in weights of fat pads and uteri. The corticosterone and prolactin group with access to running wheels gained in body weight and had larger ovaries and smaller fat pads. Hamsters receiving saline and prolactin had a body weight gain, but had no circadian rhythms of response in organ weights. The hamsters receiving only prolactin gained in body weight but had no rhythms of response, except for unexpected circadian rhythms in body weight gain and weights of fat pads. The uninjected hamsters had a modest weight gain. Most or all hamsters with access to running wheels freeran, and the corticosterone injections did not appear to synchronize the locomotor activity rhythms. In conclusion, corticosterone does interact with the injection time effect of prolactin on weights of fat pads, paired ovaries, and uteri. The mechanism of that effect, in terms of circadian rhythm theory, is unclear.  相似文献   

19.
The influence of saturated and unsaturated fatty acid ethanolamides as well as Δ9-tetrahydrocannabinol (Δ9-THC), WIN 55,212-2 and cannabinoid CB1 receptor antagonist SR 141716 on sea urchin fertilization was studied. The ethanolamides of arachidonic, oleic and linoleic acids but not saturated fatty acid (C14–C20) derivatives inhibited fertilization when pre-incubated with sperm cells. Δ9-THC and WIN 55,212-2 also inhibited fertilization, Δ9-THC being ten times as potent as WIN 55,212-2. Selective cannabinoid CB1 receptor antagonist SR 141716 also blocked fertilization and did not antagonize the action of Δ9-THC. The obtained results indicate that different unsaturated fatty acid ethanolamides may control sea urchin fertilization, and that sea urchin sperm cell cannabinoid receptor may differ from the known cannabinoid receptor subtypes.  相似文献   

20.
A new series of CB1 receptor antagonists incorporating an imidazole-based isosteric replacement for the hydrazide moiety of rimonabant (SR141716) is disclosed. Members of this imidazole series possess potent/selective binding to the rCB1 receptor and exhibit potent hCB1 functional activity. Isopropyl analog 9a demonstrated activity in the tetrad assay and was orally-active in a food intake model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号