共查询到20条相似文献,搜索用时 15 毫秒
1.
Kohn MH 《Molecular ecology》2010,19(24):5328-5331
The inevitable has happened: genomic technologies have been added to our noninvasive genetic sampling repertoire. In this issue of Molecular Ecology, Perry et al. (2010) demonstrate how DNA extraction from chimpanzee faeces, followed by a series of steps to enrich for target loci, can be coupled with next-generation sequencing. These authors collected sequence and single-nucleotide polymorphism (SNP) data at more than 600 genomic loci (chromosome 21 and the X) and the complete mitochondrial DNA. By design, each locus was 'deep sequenced' to enable SNP identification. To demonstrate the reliability of their data, the work included samples from six captive chimps, which allowed for a comparison between presumably genuine SNPs obtained from blood and potentially flawed SNPs deduced from faeces. Thus, with this method, anyone with the resources, skills and ambition to do genome sequencing of wild, elusive, or protected mammals can enjoy all of the benefits of noninvasive sampling. 相似文献
2.
3.
Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data 总被引:1,自引:0,他引:1
Sabot F Picault N El-Baidouri M Llauro C Chaparro C Piegu B Roulin A Guiderdoni E Delabastide M McCombie R Panaud O 《The Plant journal : for cell and molecular biology》2011,66(2):241-246
Transposable elements (TEs) are mobile entities that densely populate most eukaryotic genomes and contribute to both their structural and functional dynamics. However, most TE-related sequences in both plant and animal genomes correspond to inactive, degenerated elements, due to the combined effect of silencing pathways and elimination through deletions. One of the major difficulties in fully characterizing the molecular basis of genetic diversity of a given species lies in establishing its genome-wide transpositional activity. Here, we provide an extensive survey of the transpositional landscape of a plant genome using a deep sequencing strategy. This was achieved through paired-end mapping of a fourfold coverage of the genome of rice mutant line derived from an in vitro callus culture using Illumina technology. Our study shows that at least 13 TE families are active in this genotype, causing 34 new insertions. This next-generation sequencing-based strategy provides new opportunities to quantify the impact of TEs on the genome dynamics of the species. 相似文献
4.
转座子是DNA插入因子的一种,是指能在基因组间或组内跳跃的DNA片段。转座子作为插入突变剂或分子标签已被广泛地应用于基因的分离和克隆,且因其独特的性质已成为发现新基因和基因功能分析的有效工具。这使得转座子无论是在单基因水平还是全基因组水平,都成为细菌、酵母和其他微生物研究的有力工具。简单而有效的体外转座反应可以对一些以往难以进行分析的顽固微生物进行转座诱变分析。而建立在转座子基础上的信号标签诱变技术和遗传足迹法的应用则发现了一些新的病原微生物毒力因子,从而可以更好地对这些病原微生物的致病机理进行阐述。这些再次说明转座子是微生物功能基因组研究中的有力工具。本文综述了转座子及其衍生载体介导的一些技术,并讨论其在微生物功能基因组研究中的应用。 相似文献
5.
Clio Der Sarkissian Morten E. Allentoft María C. ávila-Arcos Ross Barnett Paula F. Campos Enrico Cappellini Luca Ermini Ruth Fernández Rute da Fonseca Aurélien Ginolhac Anders J. Hansen Hákon Jónsson Thorfinn Korneliussen Ashot Margaryan Michael D. Martin J. Víctor Moreno-Mayar Maanasa Raghavan Morten Rasmussen Marcela Sandoval Velasco Hannes Schroeder Mikkel Schubert Andaine Seguin-Orlando Nathan Wales M. Thomas P. Gilbert Eske Willerslev Ludovic Orlando 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1660)
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. 相似文献
6.
7.
Yi Hu David A. Holway Piotr Łukasik Linh Chau Adam D. Kay Edward G. LeBrun Katie A. Miller Jon G. Sanders Andrew V. Suarez Jacob A. Russell 《Molecular ecology》2017,26(6):1608-1630
The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause–effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low‐nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen‐provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile – an invasive species that has transitioned towards greater consumption of sugar‐rich, nitrogen‐poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight‐year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen‐provisioning symbioses in Argentine ant's dietary shift. 相似文献
8.
Experimental evolution (EE) combined with whole‐genome sequencing (WGS) has become a compelling approach to study the fundamental mechanisms and processes that drive evolution. Most EE‐WGS studies published to date have used microbes, owing to their ease of propagation and manipulation in the laboratory and relatively small genome sizes. These experiments are particularly suited to answer long‐standing questions such as: How many mutations underlie adaptive evolution, and how are they distributed across the genome and through time? Are there general rules or principles governing which genes contribute to adaptation, and are certain kinds of genes more likely to be targets than others? How common is epistasis among adaptive mutations, and what does this reveal about the variety of genetic routes to adaptation? How common is parallel evolution, where the same mutations evolve repeatedly and independently in response to similar selective pressures? Here, we summarize the significant findings of this body of work, identify important emerging trends and propose promising directions for future research. We also outline an example of a computational pipeline for use in EE‐WGS studies, based on freely available bioinformatics tools. 相似文献
9.
Laura‐Jayne Gardiner Pauline Bansept‐Basler Lisa Olohan Ryan Joynson Rachel Brenchley Neil Hall Donal M. O'Sullivan Anthony Hall 《The Plant journal : for cell and molecular biology》2016,87(4):403-419
Previously we extended the utility of mapping‐by‐sequencing by combining it with sequence capture and mapping sequence data to pseudo‐chromosomes that were organized using wheat–Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping‐by‐synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo‐chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo‐chromosomes allow us to demonstrate the application of mapping‐by‐sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub‐genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus – defining a smaller genic region than was previously possible; associate the interval with one wheat sub‐genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user‐friendly community resource for phenotype mapping. 相似文献
10.
Stephanie J. Galla Thomas R. Buckley Rob Elshire Marie L. Hale Michael Knapp John McCallum Roger Moraga Anna W. Santure Phillip Wilcox Tammy E. Steeves 《Molecular ecology》2016,25(21):5267-5281
Several reviews in the past decade have heralded the benefits of embracing high‐throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually‐beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand‐based scientists, we also provide insight for forging these cross‐sector relationships. 相似文献
11.
ZHOU XiaoGuang REN LuFeng LI YunTao ZHANG Meng YU YuDe & YU Jun Key Laboratory of Genome Sciences Information Beijing Institute of Genomics Chinese Academy of Sciences Beijing China 《中国科学:生命科学英文版》2010,(1)
As one of the most powerful tools in biomedical research,DNA sequencing not only has been improving its productivity at an exponential growth rate but has also been evolving into a new layout of technological territories toward engineering and physical disciplines over the past three decades.In this technical review,we look into technical characteristics of the next-generation sequencers and provide insights into their future development and applications.We envisage that some of the emerging platforms are c... 相似文献
12.
13.
Jonathan B. Puritz Mikhail V. Matz Robert J. Toonen Jesse N. Weber Daniel I. Bolnick Christopher E. Bird 《Molecular ecology》2014,23(24):5937-5942
We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart ( 2014 ) entitled ‘Recent novel approaches for population genomics data analysis’. Restriction‐site‐associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. ( 2007 ) and Baird et al. ( 2008 ) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. 2011 ), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart 2014 ). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. 2007 ; Baird et al. 2008 ), double digest RAD (ddRAD, Peterson et al. 2012 ), ezRAD (Toonen et al. 2013 ) and 2bRAD (Wang et al. 2012 ). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol. 相似文献
14.
McCarty DR Settles AM Suzuki M Tan BC Latshaw S Porch T Robin K Baier J Avigne W Lai J Messing J Koch KE Hannah LC 《The Plant journal : for cell and molecular biology》2005,44(1):52-61
We implement a novel strategy for harnessing the power of high-copy transposons for functional analysis of the maize genome, and report behavioral features of the Mutator system in a uniform inbred background. The unique UniformMu population and database facilitate high-throughput molecular analysis of Mu-tagged mutants and gene knockouts. Key features of the population include: (i) high mutation frequencies (7% independent seed mutations) and moderation of copy number (approximately 57 total Mu elements; 1-2 MuDR copies per plant) were maintained by continuous back-crossing into a phenotypically uniform inbred background; (ii) a bz1-mum9 marker enabled selection of stable lines (loss of MuDR), inhibiting further transpositions in lines selected for molecular analysis; (iii) build-up of mutation load was prevented by screening Mu-active parents to exclude plants carrying pre-existing seed mutations. To create a database of genomic sequences flanking Mu insertions, selected mutant lines were analyzed by sequencing of MuTAIL PCR clone libraries. These sequences were annotated and clustered to facilitate bioinformatic subtraction of ancestral elements and identification of insertions unique to mutant lines. New insertions targeted low-copy, gene-rich sequences, and in silico mapping revealed a random distribution of insertions over the genome. Our results indicate that Mu populations differ markedly in the occurrence of Mu insertion hotspots and the frequency of suppressible mutations. We suggest that controlled MuDR copy number in UniformMu lines is a key determinant of these differences. The public database (http://uniformmu.org; http://endosperm.info) includes pedigree and phenotypic data for over 2000 independent seed mutants selected from a population of 31 548 F2 lines and integrated with analyses of 34 255 MuTAIL sequences. 相似文献
15.
Parchman TL Gompert Z Mudge J Schilkey FD Benkman CW Buerkle CA 《Molecular ecology》2012,21(12):2991-3005
Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide-reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time-effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95,000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome-wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data. 相似文献
16.
17.
Polyploidy events (polyploidization) followed by progressive loss of redundant genome components are a major feature of plant evolution, with new evidence suggesting that all flowering plants possess ancestral genome duplications. Furthermore, many of our most important crop plants have undergone additional, relatively recent, genome duplication events. Recent advances in DNA sequencing have made vast amounts of new genomic data available for many plants, including a range of important crop species with highly duplicated genomes. Along with assisting traditional forward genetics approaches to study gene function, this wealth of new sequence data facilitates extensive reverse genetics-based functional analyses. However, plants featuring high levels of genome duplication as a result of recent polyploidization pose additional challenges for reverse genetic analysis. Here we review reverse genetic analysis in such polyploid plants and highlight key challenges. 相似文献
18.
Robert Ekblom Lindsay L. Farrell David B. Lank Terry Burke 《Ecology and evolution》2012,2(10):2485-2505
19.
Xiaoling Yu Wenqian Jiang Yang Shi Hanhui Ye Jun Lin 《Journal of cellular and molecular medicine》2019,23(11):7143-7150
Infectious diseases are a type of disease caused by pathogenic microorganisms. Although the discovery of antibiotics changed the treatment of infectious diseases and reduced the mortality of bacterial infections, resistant bacterial strains have emerged. Anti‐infective therapy based on aetiological evidence is the gold standard for clinical treatment, but the time lag and low positive culture rate of traditional methods of pathogen diagnosis leads to relative difficulty in obtaining the evidence of pathogens. Compared with traditional methods of pathogenic diagnosis, next‐generation and third‐generation sequencing technologies have many advantages in the detection of pathogenic microorganisms. In this review, we mainly introduce recent progress in research on pathogenic diagnostic technology and the applications of sequencing technology in the diagnosis of pathogenic microorganisms. This review provides new insights into the application of sequencing technology in the clinical diagnosis of microorganisms. 相似文献